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Abstract

This note includes recommendations for probability density functions for a positive
nuisance parameter in some common situations. We discourage the used of truncated
Gaussians (except when it is known that the answer is insensitive to the choice), preferring
instead lognormal or Gamma distributions. (Some plots will be added in the next version
of this note.)

1 Introduction

Parameters which introduce systematic uncertainties into a high energy physics statistical
analysis are often equivalent to what statisticians call (for good reason) nuisance parameters.
There is no uniformly satisfactory way of dealing with them, as discussed in my review of the
statistics and high energy physics literature at the Oxford PhyStat meeting in 2005 [1], and
in Luc Demortier’s review at PhyStat-LHC [2], and references within. This note pertains to
one class of approaches, which in effect averages a result over a probability density function
(pdf) in a nuisance parameter. This approach is natural within the Bayesian framework. It is
also common within an otherwise-frequentist calculation, where it is sometimes referred to as
a Cousins-Highland method [3], since we advocated its use in a particular special case where
a purely frequentist calculation gave a result that we found unacceptable. (The math turned
out to be the same as in the prior-predictive p-value advocated by Box [4].)

Letting ψ denote a nuisance parameter (e.g., the mean background, or integrated luminos-
ity), one asserts that a pdf p(ψ) encodes belief about its true value. As input to encoding p(ψ),
typically one has some physicist’s “best estimate” denoted by ψ̂, as well as some estimate of
its standard error or proxy thereof, denoted here by δψ.

In cases where p(ψ) includes results from subsidiary (calibration) measurements, we can
consider it to be the pdf which is posterior to those measurements (and hence in the Bayesian
framework include a earlier prior pdf and the likelihood function of the subsidiary measure-
ments). In the chain of reasoning it is then the prior pdf for the analysis at hand.

A common functional form for p(ψ) is a Gaussian,

p(ψ) =
1√

2πσ2
ψ

exp

−
(
ψ − ψ̂

)2

2σ2
ψ

, (1)

in which case δψ is identified with σψ.
Since ψ is typically a non-negative number (Poisson mean or luminosity), in computer

codes one typically truncates this pdf at zero or higher. The effect of truncation is often
negligible, but various issues can arise, conceptually and numerically. In at least one common
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case [5], the combination of such a truncated Gaussian with an improper prior for the signal
mean can result in a improper posterior (or equivalently, an answer that depends on an
arbitrary cutoff).

Meanwhile there are fairly well-motivated alternatives to the Gaussian, which are described
in the rest of this note: the lognormal [3, 6, 7, 8, 9] and the Gamma distribution [6, 7, 9, 10, 11].

2 Lognormal Distribution

From Eadie et al., “The log-normal distribution represents a random variable whose logarithm
follows a normal distribution. It provides a model for the error of a process involving many
small multiplicative errors (from the Central Limit Theorem). It is also appropriate when the
value of an observed variable is a random proportion of the previous observation.” [6, 7].

A standard form is

p(ψ) =
1√

2πσ2

1
ψ

exp

(
−(lnψ − µ)2

2σ2

)
, (2)

where µ and σ are parameters which in this form are perhaps a bit obscure, as neither
corresponds to the Gaussian equivalent. (E.g., the expectation value of ψ is exp(µ+ σ2/2).)

If, following Korytov and Chen [12], we identify the physicist’s best estimate ψ̂ with the
median (which equals exp(µ)) and introduce lnκ = σ, then an equivalent form is

p(ψ) =
1√

2π lnκ
1
ψ

exp

−
(
ln(ψ/ψ̂)

)2

2(lnκ)2

, (3)

where κ > 1 encodes the spread in the distribution, with (κ− 1) corresponding roughly to a
physicist’s multiplicative “relative uncertainty”,

κ− 1 ≡ σrel ≡ δψ/ψ. (4)

The pdf for lnψ is a Gaussian with mean at ln ψ̂ and rms deviation lnκ. The lognormal
distribution assigns equal probabilities for ψ to be a factor of κn larger or smaller than the
best estimate ψ̂, i.e.,

P (ψ > ψ̂ · κn) = P (ψ < ψ̂/κn). (5)

For n=1, these probabilities are 16% each, for n = 2 they are 2.5%, and so on (following the
usual Gaussian tail probabilities).

For small errors, κ is close to 1 and σrel << 1, In this case, by expanding logarithms, one
can see that the lognormal distribution becomes a familiar Gaussian with mean ψ̂ and rms
σrelψ̂.

The lognormal distribution has a longer tail, goes to zero at ψ = 0, and is a more mean-
ingful way than a truncated Gaussian way to encode statements such as “factor of two uncer-
tainty”.

The ROOT [13] form of the lognormal function is more general:

p(ψ) =
1√

2πσ2

1
(ψ − θ)

exp

(
−(ln(ψ − θ)−m)2

2σ2

)
. (6)

We reduce to the above by setting θ = 0 and m = µ; we do not yet see a compelling need for
θ 6= 0.
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3 Gamma Distribution

From Eadie et al., “The gamma distribution is a basic statistical tool for describing variables
bounded at one side, for example 0 < X <∞. . . . The exponential, Erlangian, and chisquare
distributions are all special cases of the gamma distribution” [6, 7]. Eadie et al.’s form is

p(ψ) =
a(aψ)b−1e−aψ

Γ(b)
. (7)

The ROOT [13] form is again more general:

p(ψ) =

(
ψ−µ
β

)γ−1
exp

(
−ψ−µ

β

)
βΓ(γ)

, (8)

corresponding to the above if we set µ = 0, β = 1/a, and γ = b.
In the case where the estimate ψ̂ is for a mean number of background events and is based

on counting events in a control region (sideband), Linnemann has advocated the use of the
gamma pdf for some time [9, 10], with an argument also known to the Gamma Ray Astronomy
community[14]. Using the notation in Ref. [11], noff events are observed in a Poisson sample
from a control region with mean that is τ times that of the mean background µb in the signal
region. (Here τ is assumed known exactly.) Then the likelihood function for the unknown
mean µb in the signal region is

L(µb) =
(τµb)noffe−τµb

noff !
. (9)

If one assumes a uniform prior for µb and applies Bayes’s Theorem, then the (unnormalized)
posterior pdf p(µb) is the same mathematical expression, which on comparison with Eqn. 7
is seen to be a (unnormalized) Gamma distribution. Ref. [11] discusses interesting identities
between intervals based on this posterior and those from purely frequentist origin.

If the estimates ψ̂ and δψ are in fact summarizing such a sideband-based situation, with ψ
corresponding to the mean background µb in the signal region, then typically one has obtained
these estimates by simple Poisson formula, ψ̂ = noff/τ and δψ ==

√
noff/τ . From these one

can reverse-engineer the original “raw” data τ = ψ̂/(δψ)2 and noff = ψ̂τ , and hence the values
of a and b to use in Gamma posterior of the form in Eqn. 7:

a = τ = ψ̂/(δψ)2; b = noff + 1 = (ψ̂/δψ)2 + 1. (10)

4 Summary

Given ψ̂ and δψ, the lognormal distribution (Eqn. 3 with κ defined from Eqn. 4) and Gamma
distribution (Eqn. 7 with a and b defined from Eqn. 10) are preferable to a truncated Gaussian
if the respective arguments are relevant. This requires some care, and ultimately (as with any
Bayesian prior) an analysis of the sensitivity to the prior; the Gamma prior above rests on
the arbitrary flat prior before the sideband measurement, and the lognormal prior may or
may not capture the essence of a theoretical systematic uncertainty. (For the case in which
the lognormal is chosen as an approximation to the effect of a product of many terms, the
parameters might be better identified from the characteristics of the functions forming the
product.) In any case, trying out all three can identify cases where the truncated Gaussian
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has numerical issues, or where there is sensitivity to the form of p(ψ). In the latter case, of
course further analyses is required.

These simple suggestions are a beginning, not the end, of the story regarding Bayesian
priors. Various studies have shown the sorts of pitfalls one can fall into when combining
Bayesian priors for more than one parameter. Only recently have some first results [15] been
obtained by high energy physicists trying to employ some more sophisticated methods from
the statistics literature, in an effort to take us out of the “pseudo-Bayesian” era.
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