EeV ν_{μ} Detection in AMANDA

Signal predominantly from horizon Atm. background closer to zenith

S. Barwick, UCLA workshop November, 2000

AMANDA-II Feb. 00

Features

- Am-II/B Sensitivity: $V_{eff}\Omega \sim 10 \text{ km}^3 \text{sr}$
- 2 years of livetime on tape
- Calibration possible using *in-situ* N_2 laser – Equivalent to 80 TeV cascade
- Background rejection straightforward
 - Total energy and "energy flow" variables

EeV Science Goals

- GZK from $p+\gamma_{CMB}$
 - Detection would confirm mechanism
 - Evolution gives factor 10 uncertainty in flux
 - Non-detection can be used to constrain neutrino cross section at EeV energies in lab frame.
- Supermassive Black Hole/ AGN models
 - Compared to searches at 1-100 TeV, probes a complementary set of models
 - Salamon and Stecker ('95), Protheroe('97), Mannheim('95), Halzen and Zas('97)
- Exotic sources physics of the early Universe
 - Topological defects, Heavy Boson decay, Z-burst

Muon Backgrounds

- At $E > 10^{15} \text{ eV}$, Atm. v are negligible
- Atm. charm production (c $\rightarrow \mu$)
 - Significant theoretical uncertainty, but becomes dominant at E_{μ} ~10¹⁶ eV
- Atm. multi-muon events may mimic higher energy events
- The latter two backgrounds are angular dependent

Downgoing v-induced μ flux $F_{\mu}=F_{\nu}*P_{\nu\mu}(E_{th}>10^{7} \text{ GeV}, \cos(\theta))$

Energy Resolution

- Catastrophic dE/dx within 400m provides $E_{\mu} > E_{min}$ threshold.
- Events are very "bright"

Effective Volumes

Triggerlevel:

High Multiplicity (>=120 hits): Veff $\cdot \Omega = 25 \text{ km}^3 \text{s}$ - Typeset by FoilTEX - for $E_{m} = 10^{20} \text{eV}$

all hits to f

US.

nhits

Cut sumtot>4000 and nhits/nch>4:

eff. Volume after Cut

Veff Da +6 km 3 sr for Em= 1020 V

Calibration: N_2 laser (~10¹² γ /pulse)

- E_{casc}~ 100 TeV – LE vs distance
 - Npe vs distance
- Conclusions
 - Details require ice variation
 - If N_{pe}>10³, OMs behave poorly
 - X-talk can be removed with TOT cuts

OM ID

What's Next

- Develop energy flow and "PMT saturation" variables
- Tune analysis on 1/3 of '97 data
- Include nonlinear OM behavior in detector simulation (some loss of information at small distances); better AP description
- Begin AMANDA-II simulation