Goldstone Lunar Neutrino Search
Nov. 16 2000

JPL:
Peter Gorham, Kurt Liewer, Chuck Naudet

UCLA:
David Saltzberg, Dawn Williams (2001)

Support:
JPL DSN Science Services (G. Resch & M. Klein) (JPL staff)
Caltech President’s Fund (PG & DS)
DOE & NSF Career Awards (DS)
Background & motivation

• G. Askaryan, early 60’s:
 – HE particle cascades produce ~20-30% more electrons than positrons
 • compton scattering, e+ annihilation, delta rays, etc.
 • => showers in dielectric produce coherent microwave Cherenkov radiation
 – One should look for low-loss microwave dielectrics abundant in nature
 • Ice, many rocks
 • Lunar regolith--a surface array on the moon!

• Immediate application was found in air showers (J. Jelley)
 – But the dominant process in EAS is not coherent Cherenkov
 • probably boosted dipole radiation from geomagnetic charge separation
 – No follow-up on Askaryan’s suggestion of solid dielectrics till 80’s

• 1988: I. Zheleznykh & R. Dagkesamansky:
 – propose that 1e20 eV neutrino events may be detectable from earth
 – First experiment (Hankins et al 96) done in 1994 w/ Parkes 64m
 • null result in 10 hours single-dish observation
Goldstone experiment

- Utilize Deep Space telecom 70m antenna DSS14 for lunar RF pulse search--fill gaps in SC sched.
- First observations late 1998:
 - approach based on Hankins et al. 1996 results from Parkes
 - utilize active RFI veto
- 1999: add 2nd 34 m fiber-linked antenna DSS13
 - initially used passive recording with local trigger at DSS14
- 2000: DSS14 down for first half, but ~20 hours livetime acquired since July
 - focussed on limb observations, lower threshold, better trigger system
Lunar Regolith Interactions & Cherenkov radiation
DSS13: 34 m Beam waveguide antenna

- DSS13: research antenna
- Uses “beam waveguide” optics
 - low-freq cutoff at ~1.8 GHz
- High efficiency, excellent surface
- At present: 140 MHz BW (S-band)
 - single pol, dual pol planned for ‘01
New RARG location

- Two relay racks of our own
- JPL tech support
- DSN committed to 120+ hours of exposure
- New trigger
- ~8 visits, ~ 20-30 hours livetime
New Trigger

- RFI veto:
 - no longer in trigger
 - record off-axis L-band signal for post-analysis

- Pulses at both antennas now required for trigger
 - powerful interference rejection
 - disc. thresholds set according to relative aperture

- Thermal noise coincidence rates ~0.2 per minute
 - but only ~1/day close to proper moon delay
Thermal Noise Statistics

- Voltages proportional to pulse field strength: pure gaussian:
 - \(\Rightarrow \frac{dN}{dV} \sim \exp(-V^2) \)

- Square-law detection used for discrimination
 - \(\Rightarrow \) Power \(\sim V^2/Z \)
 - \(\Rightarrow \frac{dN}{dP} \sim \frac{dN}{dV} \)
 - \(\sim \exp(-I) \)

- Statistics of detected power are exponential
 - \(\Rightarrow \) 5 sigma equivalent significance requires SNR~15
Timing & pulse shape calibration

- S-band Monocycle pulser:
 - provides band-limited lin.pol. Pulses
 - checks amp. Linearity, net cable delays, band-limited pulse shape

- Zoomed version: LCP pulse is broader (40 MHz BW), RCP narrower (~100MHz BW); also slight timing offset
Typical RF interference trigger

One of the 2 antennas may have high RFI singles rates

Will produce excess coincidence rate with 2nd antenna thermal noise

Events are clearly distinguishable: L-band channel pulse is present

Overall increase in trigger rates ~10%
Typical Thermal Noise trigger
Goldstone diffuse neutrino flux limits

- ~30 hrs livetime (includes previous data)
 - No events above net 5 sigma

New Monte Carlo estimates:
 - Xsection ‘down’ by 30-40%
 - moving target effect!
 - Full refraction raytrace, including surface roughness, regolith absorption
 - Y-distribution, LPM included

Limb observations:
 - lower threshold, but much less effective volume
 - Weaker limit but with more confidence

Fly’s Eye limit: needs update!
 - Corrected here (PG) by using published CR aperture, new neutrino xsections
Statistics of non-RFI triggers near threshold

Cuts applied:
- tighter timing
- pulse width close to band-limited
- not obvious RFI

BKG weight determined by randomizing event UT within run period

Some concentration of events near correct delay:
- not significant yet
- ~2 microsec offset hard to explain
Future plans

- Still ~100 hours more dual antenna time to be scheduled in next 6-8 months
- New strategy: use partial defocussing at DSS14 (J. Ralston suggestion) to improve effective volume
 - expect factor of 5-10 improvement with only modest increase in energy threshold
 - DSS14 beam will better match DSS13 beam & response
- Improve bandwidth, get dual polarization at DSS13
 - Could lead to roughly equal sensitivity for two antennas