LARGE SCALE RADIO DETECTORS IN ICE.

Dave Seckel @ RADHEP 2000
10^4 Radio Antennas @ 1 km spacing

(similar in scale to Pierre Auger project)
1. Confession

2. UHE CR + G7K >

3. Event Rates + Detector Mass

4. RICE \rightarrow X-RICE

5. Alternate Technologies
 - ICECUBE
 - Air showers - ground
 - Air fluorescence - ground/space
 - LUNAR

6. Feasibility
Source -> GtK

\[p \rightarrow n \rightarrow r \rightarrow \bar{\nu} \rightarrow \nu \]

- Protons primary
- \(\nu \)'s secondary
- \(\bar{\nu} \)

\[\text{Cosmic String} \]

\[3 \rightarrow \bar{\nu} \text{ from "k" or jet} \]

- \(\bar{\nu} \)'s primary
- Protons suppressed
- GZK \Rightarrow 1 proton $E_p > 10^{18}$ eV

$$\Rightarrow 1 \nu \ \text{w/} \ E > 10^{18} \text{eV}$$

- $R = \frac{\int_{10^{16}}^{10^{19}} \phi_\nu \ dE_\nu}{\int_{10^{19}}^{10^{20}} \phi_{cR} \ dE_{cR}} = 1 + \alpha$

- If $\alpha \approx 1$ \hspace{1cm} Astrophysical Source
 \hspace{1cm} $\nu\gamma$ production
 \hspace{1cm} (AGN, GRB...)

$\alpha \ll 1$ \hspace{1cm} Astrophysical Source
\hspace{1cm} with NO $\gamma\gamma$
\hspace{1cm} (Hot spots)

$\alpha \gg 1$ \hspace{1cm} Top Down (Defects)
In 2 km Ice, for VT models
All Events above Threshold

Differential Event Rate for VT Model 2

N(E > E) (10^6 km^-2 s^-1)

Log10(E)
Array of receivers is detected by a bursted radio pulse (100 MHz - 1 GHz) resulting in radio emission being coherent Cherenkov

At wavelengths longer than the shower, an EM shower

Antarctic Ice producing a UHE * interacts in

RICE Concept
3 Versions of RICE

- **RICE**
 - **Feasibility**
 - Background Survey
 - ~20 Antennas (Rx)
 - (100 m)3 10-100 PeV
 - Limits

- **RICE3**
 - Few hundred Rx
 - (km)3 1-10 PeV
 - Limits
 - Test models
 - Events
 - Calibrate

- **X-RICE**
 - 10^3-10^4 Rx
 - 10^3-10^4 km3 1 EeV
 - 100 GZK γ's per yr
 - "Guaranteed"
A "small" array of antennas, $V_{\text{threshold}} = 30\, \mu V$

11x11, 2 km spacing, 300 m depth

$E = 10^{16}\, \text{GeV}$
Array efficiency:

\(\text{central array efficiency} \)

\((N=4, R=4) \)

\(0.5 \)

\(1.0, 1 \)

\(1.0, 4 \)

\(1.5, 1 \)

\(2.0, 1 \)

\(10^{17} \) to \(10^{21} \) cascade energy (eV)

\[\text{Horizontal spacing} = \text{# of antennas/ hole} \]
Experiments

Technique

Optical \(\gamma \) \(\text{AMANDA, ANTARES} \)
\(\text{NEVOTIR, BAIKAL} \)
\(\text{ICE}^3 \)

Radio \(\text{RICE, RICE}^3, \text{X-RICE} \)
\(\text{LUNAR, REMOTE} \)
\(\text{ORBIT} \)
\(\text{VENUS} \)

Air Fluorescence \(\text{FLY\textprime S\textprime GYE, Hi Res I, II} \)
\(\text{Telescope Array Project} \)
\(\text{AUGER, OWL/AIRMAK} \)

Ground \(\text{AGASA, AUGER} \)
G2K at ICECUBE

- CONTAINED EVENTS \(1 \text{ km}^3, 2 \pi \text{ sV} \)
 \(R \sim 0.01 - 0.1 \text{ /yr} \)
 \(\Delta E \text{ good} \)

- External \(\mu \)'s (\(\Delta E \text{ not so good} \))
 \(R \sim 1-2 \text{ /yr} \) (private comm. Francis)

\(\text{contained} = 6 \text{ km}^3 \text{ sV} \)
\(\text{Horizontal} = 10 \text{ km}^3 \text{ sV} \) ? 6x Contained
\(\text{Down} = \) ? 15
\(\text{Vertical} = 2 \)
AIR TARGET

GROUND ARRAY
water tanks
scintillator

N. FLUORESCENCE DETECTOR
(fly's eye e.g.)

- PROVEN TECHNOLOGY
- COS Rayz Background
- HIGH THRESHOLD
- LOW TARGET MASS/AREA
equiv. 10 cm H$_2$O
\[\log [\text{km}^3 \text{ sv}] \]
Neutrino Detector Characteristics

Lower E Limit: Detector Threshold (Sensitivity)
Upper E Limit: Detector Size (Flux)
Feasibility

• All the problems of ICERCUBE

• All the problems of AUGER

• But the real problem is convincing people that it works