Tatiana Vinogradova JPL

A proposed experiment to detect air showers with the Jicamarca radar system

first look at the expected results and potential problems

Overview

- Jicamarca RADAR Observatory -
- Detection technique

Detector geometry

proposed site for with rodar

Expected results (experiment normalization aspects, number of expected events, very first estimations..)

Jicamarca Radar Observatory

- The Observatory is the scientific facility for dipoles covering an area of nearly 85,000 square studying the equatorial ionosphere. It has a 2-MW transmitter and a main antenna with 18,432
- It is located at a geographic latitude of 11.95° 500 m ASL south and a longitude of 76.87° west (Peru, South America). The altitude of the Observatory is about
- Jicamarca were made in late 1961 The Jicamarca Radio Observatory was built in 1960, the first incoherent scatter measurements at

- any desired fashion. separately phased (by hand, changing cable lengths), and dipoles. Each linear polarization of each module can be into 64 separate modules of 12 x 12 crossed half-wave The 49.92 MHz incoherent scatter radar is the principal large square array of 18,432 half-wave dipoles arranged facility of the Observatory. The radar antenna consists of a the modules can be fed separately or connected in almost
- each of these new modules can deliver a peak considerably longer pulses are possible. long as 2 ms show little power droop; of 6%, and pulses as short as 0.8-1.0 μ s. Pulses as power of ~1.5 MW, with a maximum duty cycle

a quarter wavelength above a ground screen. Two of these arrays can handle high There are 3 additional 50 MHz "mattress" consists of 4 x 2 half-wave dipoles mounted angles in the E-W direction only. Each array antennas steerable to +/-70° zenith

" mattress"

Basic concept of the Jicamarca CRS detection

- section (RCS) for a given choice of radar frequency. Extensive air showers resulting from primary cosmic-ray described in terms of effective radar backscatter cross compatible of that of micro-meteors; this trail can be particles of E>10¹⁸ eV produce an ionization trail which is
- Radiation is emitted from an antenna with peak transmitted power Pt and directivity gain of antenna G , C=G(B,P)
- Radar return power :

$$P_{\nu} = P_{\nu} \sigma_{\nu} \int_{0}^{\infty} \frac{G^{2} \lambda^{2}}{(4\pi)^{3} R^{4}} \qquad P_{\nu} = kT_{sys} \Delta f$$
expression of the expression of t

Parameters of the Jicamarca system

- Transmitted pulse power
- instruct. Efficiency after losses
- Wavelength
- Main beam lobe diameter
- Antenna gain
- System temperature Tsys
- Pulse duration
- Duty cycle
- PRI
- Effective BW
- Number of pulses
- Received signal power

- 1.5 MW —>
- . 1 esti
- 6 m -
- ~ 0.5 Rad -> calculated
- ~ 20.0 -> calculated
- ~ 1000 K -> calibration
- $10^{\text{-}}6 10^{\text{-}}3 \text{ s} \rightarrow \text{fanc}$ 6 % - fixed
- needs to be tuned
- 1 MHz
- N choose
- need to estimate RCS

Antenna array of the 4x2 half-wave dipoles mounted a quarter wavelength above the ground screen

How does RES looks for Jicamarca in terms RCS (Radar Cross Section)?

- regimes: under- and over-dense. For Radar detection of ionization column we need to consider two
- They can be distinguished based on the ratio of radar frequency to plasma frequency of ionized region.
- is high enough and and the plasma frequency exceeds the radar Over-dense portion of the is the region where the electron density frequency -> radar signal is reflected
- can penetrate the region and will scatter with partial coherence plasma frequency is below the frequency of incoming radar, which Under-dense columns have electron densities such that the local
- Empirical parameterizations for two cases at a given frequency for 10 km altitude used are:

$$\sigma_b^{od} = 2.6*10^4 (f/30 \text{ MHz})^{-1.45} (E/10^{20})^{0.44} (R/10 \text{ km}) m^2$$
 $\sigma_b^{ud} = 33*(f/30 \text{ MHz})^{-1.84} (E/10^{20})^{1.9} (R/10 \text{ km}) m^2$
air density condition simulation?

simulation?

Figure 1. RCS [m^2] for UD case as a function of

Jicamarca radar – 4 days running

Observation time - 4 days (345600 sec)

 $E > 10^{17} \text{ eV}$

 $E > 10^{18} eV$

~ 15 events ~

 $E > 10^{19} \text{ eV}$

~ 7 events

 ~ 0.7 events

 $E > 10^20 eV$

 ~ 0.2 events

1 2 10%

or parametrization affects

E>0'son-can be off by factor of multiple charse

Conclusions

- There are many uncertainty in the proposed example(in the present estimation is hidden in the method - lifetime of ionization column is one simulation. timing scenario of the experiment and a good efficiency ~ 10%) requires tuning of the optimum
- scattering effects; can be more realistically Radar detection - ground clutter and related understood in the real experimental condition
- .. Testing the technique