California Physics Standard 1g
           Send comments to:  layton@physics.ucla.edu
1. Newton's laws predict the motion of most objects.


As a basis for understanding this concept:

g.  Students know circular motion requires application of a constant force directed toward the center of the circle. (Note:  Here the Standard means “constant” in magnitude only since a change in direction obviously changes the force.)

Since students are usually introduced to acceleration in the context of straight line motion, they frequently only think of acceleration as “speeding up” or  “slowing down.”  A discussion of centripetal acceleration provides an excellent opportunity to stress that velocity and acceleration are vectors and should they stay at constant magnitude, they are changing even if they only change direction.  Also, since Newton’s second law is a vector equation, the vector force is always in the same direction as the vector acceleration. These centrally directed quantities are called “centripetal force” and “centripetal acceleration”. Finally, when an object moves in a circle, the velocity is always changing direction such that the change is directed toward the center of the circle. Hence, the acceleration and the force are therefore directed toward the center of the circle.

The conical pendulum lab to study centripetal force.

A simple lab that gives reasonably good results involves the use of a “conical pendulum.”  The essential equipment is a pendulum about 1 meter long, a meter stick, a clock with a sweep second hand or a stop watch.  If basic trigonometry is a challenge, a spring balance can be used to eliminate the need for trig.  The basic idea behind the lab is to set the 
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Problems and Applications in Circular Motion
There are many interesting problems and applications involving circular motion.  The following is simply a discussion of some of these that seem to be the most interesting and perhaps confounding:

1.  A car can accelerate either by speeding up, slowing down or turning a corner.  Which of these three do you think can produce the greatest acceleration in the average automobile?  What about the average bicycle?

The answer can be argued, but it is interesting to suggest that students look at the way the tread on the tires are grooved.  Particularly with bicycle tires, the groves are usually around the circumference of the tire (not across the tire) suggesting that the suspected larger forces will come from turning rather than breaking or speeding up.

2.  If you are in a freely falling elevator you will seem weightless since the floor of the elevator accelerates downward at the acceleration of gravity, as do you.  Space stations circle the earth and the astronauts seem to be weightless for the same reason.  What must be the speed of a satellite in circular orbit?

[image: image5.wmf]First, it must be appreciated that most space stations orbit very near the earth so the radius of the orbit is essentially the radius of the earth.  A plug into g = ac = VT2/r and solving for VT will yield the answer.


3. After the discussion and demonstration, measure the radius of the bucket’s swing and have the students calculate the minimum tangential velocity at the top of the swing.

In Standards 1g and 1l* the expression for centripetal force and centripetal acceleration are given without derivation.    Your class might appreciate a derivation of these expressions.

Here is the result for centripetal acceleration:


What follows is a derivation of the very important relationship for centripetal acceleration:

Derivations of this very useful “formula” can be found in any college physics text but they usually involve some calculus.  The following derivation might be useful to help good students to an appreciation where the “formula” comes from and only uses “calculus” to the extent that students recognize  “instantaneous” velocity and acceleration are the ratios of Ds/Dt and Dv/Dt in an “instant”.  That is, when Dt goes to zero. 
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The illustration on the right shows the original velocity V0 and V1 tail

to tail, hence the change in velocity is ∆V.   Since the velocities are always


     ∆V
perpendicular to the radius vectors, they sweep out the same angle and therefore

the triangle S0 ∆S S1  is similar to the triangle V0  ∆V V1 .  Since corresponding 

  V1
parts of similar triangles are in the same ratio, it follows that ∆V/V  =  ∆S/S. 

Solving this for ∆V gives ∆V = V ∆S/S.   Dividing both sides of this relationship by ∆t gives 

∆V/∆t = V∆S/∆t /(S).  But, when we make ∆t very small, this equation becomes a = VV/S (from

the definition of acceleration and velocity.  Since S is the radius of the original circle we can write 

the equation aC = VT2/r where aC is the centripetal acceleration and VT is the tangential speed.

It is also easy to show that the units of this equation are correct.

Finally, since F = ma, it naturally follows that centripetal force FC = maC= m(vT)2/r.
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pendulum moving in a circle so that the string of the pendulum sweeps out a cone.  (Several launches may be necessary to have the pendulum move in a circle.)  If the pendulum is near the floor, the radius of the circle can be measured and the time it takes for the pendulum to make a recorded number of cycles can be measured.  Since the friction is so low, the orbits will repeat many times without appreciable decrease in the radius of the orbit.  The experiment can be repeated using several different radii of the launch orbit.  (Warning, students will not expect the period to come out the same no matter the radius!)





At this point, with a little trig, there is enough data to test the basic expression for centripetal acceleration.  Classes without trig can use a spring balance to weigh the pendulum bob (dividing by “g” will yield its mass) and then use the spring balance to pull the bob aside to the assorted radii used earlier.  This will give the inward directed force hence making it possible to compare with F = m VT2/r.
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A great demonstration is to place water into a bucket, or can you have fixed with a bail and attached to a string, and whirl it in a vertical circle at a fast enough speed to prevent the water from falling out.  However,  it is best to discuss with the class before you do the demonstration the rate you must accelerate the bucket downward in a straight line so that the bucket and the water fall at the same rate.  (Students need to know that linear acceleration and centripetal acceleration are the same thing.)  





aC = vT2/r where aC is centripetal acceleration, vT is tangential speed and r is the radius of the circle.





The illustration on the left represents an object moving in a circle at constant speed V.  The radius of the circle is S, and S0  is the initial position of the object, and S1 is the position of the object at some small time later, ∆t.  The change in position of the object is therefore, ∆S.  The velocity V is always at right angles to the radius S as it changes in direction from the original velocity V0 to V1.  Since the object moves at constant speed, the length of the V vectors remain the same.  Now let us move the velocity vectors so their tails come together making it is possible to measure ∆V.
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