Abstract
 

Design of Photo-injectors for the CTF-3 Project
R. Roux
LAL, Université Paris-Sud

 

For particle physics at the TeV energy scale, CERN is developing an ambitious two-beam accelerator concept for the construction of a linear collider, CLIC. This scheme is based on acceleration of the beam by 30 GHz cavities for which the RF power would be provided by the deceleration of a secondary electron beam at high intensity but low energy. To test issues in this scheme, an accelerator, the CLIC Test Facility (CTF3) is under development at CERN. LAL-Orsay is responsible for the construction of two photo-injectors for two different linacs of CTF3. The specifications for the photo-gun which will be used to produce the 30 GHz RF power are very demanding. The RF gun must provide a high quality beam composed of more than 2,000 bunches each containing 2.33 nC of charge at a repetition rate of 3 GHz. The model adopted is inspired from the CERN 2-1/2 cell type IV RF gun. It has been modified according to the results of experiments at CERN which showed a dramatic exponential growth of the residual pressure in the gun with the extracted charge. We will summarize all the studies performed on the RF design and on the beam dynamics. A comparison with RF measurements will be also shown. The constraints on the second photo-injector are less severe since it must be operated with one or 64 bunches of 0.5 nC each. It will also be a 2.5 cell gun at 3 GHz but its design will be substantially different with respect to the former. This last project has only recently begun and therefore we will limit ourselves to the presentation of the results of the RF and beam dynamics simulations.

  go back