

Status and Perspectives of Photo Injector Developments for High Brightness Beams

Frank Stephan

DESY, location Zeuthen

at the ICFA workshop on "The Physics and Applications of High Brightness Electron Beams" in Erice, Sicily, October 9-14, 2005

Frank Stephan (DESY) at Erice, October 2005

1

Motivation and Content

2

sim.

data

DC Photo Electron Guns

PITZ Photo Injector Test Facility Zeuthen

- Advantages
 - good vacuum
 - → NEA cathodes (GaAs),
 - → low thermal emittance
 - lots of operating experience

500-750 kV photo emission gun with preparation, cleaning, and load lock chambers

courtesy of Ch. Sinclair, Cornell

- Disadvantages
 - low accelerating gradient at cathode
 - \rightarrow long bunches \rightarrow buncher cavity
 - low beam energy after the source \rightarrow booster

NC RF Guns

bucking coil

waveguide

- Advantages
 - high accel. gradient at cathode + good space charge compensation
 → high bunch charge
 - medium beam energy

- lots of operating experience, emittance record
- Disadvantages
 - medium vacuum conditions
 - water cooling limits average RF power → broad range of average currents (RF frequency)

SC RF Guns

- Advantages
 - high RF duty cycle, CW
 → high av. beam power
 - good vacuum condition
 - medium beam energy

- Disadvantages
 - high accel. gradient at cathode, but limited space charge compensation → limited bunch charge
 BUT: new developments are on the way
 - limited operation experience

PITZ Photo Injector Test Facility Zeuthen

e.g. VUV-FEL injector:

Simulation of 'upgraded VUV-FEL'

Courtesy of M. Krasilnikov, DESY

Frank Stephan (DESY) at Erice, October 2005

7

DC Guns @ JLab + Cornell

PITZ Photo Injector Test Facility Zeuthen

	JLab, exp. results
operation mode	
pulsed / CW	CW
single bunch charge	122 pC
single bunch rep rate	75 MHz
DC voltage / gap	350 kV / 10.57 cm
average current	9.1 mA
norm. trans. emittance (rms)	~ 8-10 mm mrad @ 10 MeV

8

data

DC Guns @ JLab + Cornell

PITZ **Photo Injector Test Facility Zeuthen**

	JLab, exp. results	Cornell, goal	parameters
operation mode		low charge	high charge
pulsed / CW	CW	CW	CW
single bunch charge	122 pC	77 pC	1 nC
single bunch rep rate	75 MHz	1300 MHz	1 – 10 MHz
DC voltage / gap	350 kV / 10.57 cm	~ 600 kV / 5 cm	~ 800 kV / 5 cm
average current	9.1 mA	100 mA	1 mA
norm. trans. emittance (rms)	~ 8-10 mm mrad @ 10 MeV	old: < 1 mm mrad, new: 0.1 mm mrad @ 13 MeV	new: ~ 1 mm mrad @ 13 MeV
old design for E based X-ray sou at Cornell:	RL- DC gun, Irce NEA cathode 3 - () So	five - 2 - ce - I SR lenoids	F cavities -
see I. Bazarov and C. S PAC2003, pp. 2062	Sinclair, 0 0 1	77 pC beam size (mm) 2 3 4 5 position (m)	15 MeV emittance (mm mrad) 6 7 8
Courtesy of Ch. Sinclair, Corn	Frank Stephan (DES)	() at Erice, October 2005	data sim. 9

Frank Stephan (DESY) at Erice, October 2005 Courtesy of Ch. Sinclair, Cornell

- 22 decision variables, incorporating all physical constraints (e.g. element field strengths and locations, SRF phases, transverse and longitudinal laser profiles, bunch charge, cathode thermal energy)
- ASTRA used for tracking
- optimization for 80 pC (max. av. brilliance) and 800 pC (high photon flux per pulse)

Results for 800 pC:

Multivariate Optimization ..., continued

Parameter	old design, PAC2003	This work	Units
Charge	80	80	pC
Laser spot size (rms)	0.6	0.3	mm
Laser pulse duration (rms)	20	11	ps
de gun voltage	500	750	kV
Buncher voltage	116	126	kV
SRF cavity 1 gradient	9.8	5.5	MV/m
SRF cavities 2-5 gradient	7.2	10.6	MV/m
SRF cavity 1 phase	10	43	0
Solenoid 1 peak field	0.058	0.077	Т
Solenoid 2 peak field	0.040	0.043	Т
Solenoid 1 position	0.29	0.26	m
Solenoid 2 position	1.00	1.12	m
Buncher position	0.80	0.57	m
SRF cavity 1 position	1.80	1.90	m
Transverse emittance (rms)	0.82	0.14	mm mrad
Bunch length (rms)	0.80	0.78	mm
Longitudinal emittance (rms)	8.7	6.2	mm keV
Kinetic energy	10.6	12.6	MeV

• possible problems, e.g.:

- temporal response of GaAs cathode might degrade temporal electron bunch profile at emission
- desired gun voltage of 500-750 kV is above presently achieved values
 (→ geometry changes, coatings)
- beam energy still low, needs proper matching of following accelerator

• possible source for polarized electrons (\rightarrow cathode + laser)

Phys. Rev. ST-AB 8, 034202 (2005) Frank Stephan (DESY) at Erice, October 2005

Results for 80 pC

- → impressive results for 80 and 800 pC
- → shows importance and benefit of multiv. optimization

Experimental Schedule:

- first electrons from gun in Dec. 2005
- mid 2006: laser for 1.3 GHz operation
- early 2008: injector cryomodule ready

NC RF Gun @ Boeing

parameters measured in 1992:

pulsed / CW	pulsed
single bunch charge	1 – 7 nC
single bunch rep rate	27 MHz
length of bunch train	8.3 ms
bunch train rep rate	30 Hz
average current	6.7 – 47 mA
norm. trans. emittance (rms)	5 – 10 mm mrad @ 5 MeV
rf frequency	433 MHz

 \rightarrow 25 MV/m peak field @ cathode

record average current !!!

duty cycle: 25 %

re-entrant design

APL 63 (15), 1993, pp. 2035-2037,

Courtesy of D. Dowell, SLAC

RF power: 600 kW

SC Guns @ FZ Rossendorf

gun type	¹ / ₂ cell gun results obtained
operation mode	
pulsed / CW	CW
single bunch charge	1-20 pC
single bunch rep rate	26 MHz
length of bunch train	-
bunch train rep rate	-
average current	≤ 130 µA
norm. trans. emittance (rms)	2.5 mm mrad @ 4 pC, 900 keV
rf frequency	1.3 GHz

- NC Cs₂Te cathode in SC gun
 → high QE → relax requirements
- on laser system
- no Q degradation observed over 7 weeks (5h/d)

SC Guns @ FZ Rossendorf

HOM filter

PITZ **Photo Injector Test Facility Zeuthen**

LN₂ reservoir

cathode cooler cathode

choke filter

gun half-cell

He-vessel

power coupler

Cathode transfer rod

gun type	3.4 cell gun, Goals		
operation mode	ELBE	high charge	
pulsed / CW	CW	CW	
single bunch charge	77 pC	1 nC	
single bunch rep rate	13 MHz	1 MHz	
average current	1 mA	1 mA	
norm. trans. emittance (rms)	1.5 mm mrad @ 9.5 MeV	2.5 mm mrad @ 9.5 MeV	
rf frequency	1.3 GHz	1.3 GHz	

With magnetic mode:

PITZ Photo Injector Test Facility Zeuthen

gun type	¹ ∕₂, SC, all Ni	¹ ⁄ ₂ , SC, NC cath.	DC + SRF boost.	21/2, NC RF, CW
collabor. partners	BNL, <mark>data</mark>	BNL, <mark>design</mark>	JLab, <mark>design</mark>	LANL, <mark>design</mark>
pulsed / CW		CW	CW	CW
single bunch charge / nC	the QE was	1.42 / 10	0.133	1.0
single bunch rep rate / MHz	be	351.87 / 10	748.5	100
average current / mA	2 · 10 ⁻⁶ @266nm	500 / 100	100	100
norm. trans. emittance (rms, geom. av.) / mm mrad	1 ·10 ⁻⁵ @248nm	2.4 @ 2 MeV / 11.1 @ 3.2 MeV	1.2 @ 7.7 MeV	4 @ 2 MeV
rf frequency / MHz	1300	703.75	booster: 748.5	700

Frank Stephan

EPAC2004, ERL2005, Courtesy of AES+BNL+LANL

gun type	¹ ∕₂, SC, all Ni	¹ / ₂ , SC, NC cath.	DC + SRF boost.	21⁄2, NC RF, CW
collabor. partners	BNL, <mark>data</mark>	BNL, <mark>design</mark>	JLab, <mark>design</mark>	LANL, <mark>design</mark>
pulsed / CW		CW	CW	CW
single bunch charge / nC	the QE was	1.42 / 10	0.133	1.0
single bunch rep rate / MHz	be	351.87 / 10	748.5	100
average current / mA	2.10 ⁻⁶ @266nm	500 / 100	100	100
norm. trans. emittance (rms, geom. av.) / mm mrad	1 · 10 ⁻⁵ @248nm	2.4 @ 2 MeV / 11.1 @ 3.2 MeV	1.2 @ 7.7 MeV	4 @ 2 MeV
rf frequency / MHz	1300	703.75	booster: 748.5	700

PITZ Photo Injector Test Facility Zeuthen

gun type	¹ ∕₂, SC, all Ni	¹ / ₂ , SC, NC cath.	DC + SRF boost.	21⁄2, NC RF, CW
collabor. partners	BNL, <mark>data</mark>	BNL, <mark>design</mark>	JLab, <mark>design</mark>	LANL, <mark>design</mark>
pulsed / CW		CW	CW	CW
single bunch charge / nC	the QE was	1.42 / 10	0.133	1.0
single bunch rep rate / MHz	be	351.87 / 10	748.5	100
average current / mA	2.10 ⁻⁶ @266nm	500 / 100	100	100
norm. trans. emittance (rms, geom. av.) / mm mrad	1 10 ⁻⁵ @248nm	2.4 @ 2 MeV / 11.1 @ 3.2 MeV	1.2 @ 7.7 MeV	4 @ 2 MeV
rf frequency / MHz	1300	703.75	booster: 748.5	700

EPAC2004, ERL2005, Courtesy of AES+BNL+LANL

Frank Stephan (DESY) at Erice, October 2005

sim.

PITZ Photo Injector Test Facility Zeuthen

gun type	¹ ∕₂, SC, all Ni	¹ ⁄ ₂ , SC, NC cath.	DC + SRF boost.	21/2, NC RF, CW
collabor. partners	BNL, <mark>data</mark>	BNL, <mark>design</mark>	JLab, <mark>design</mark>	LANL, <mark>design</mark>
pulsed / CW		CW	CW	CW
single bunch charge / nC	the QE was	1.42 / 10	0.133	1.0
single bunch rep rate / MHz	be	351.87 / 10	748.5	100
average current / mA	2.10 ⁻⁶ @266nm	500 / 100	100	100
norm. trans. emittance (rms, geom. av.) / mm mrad	1 10 ⁻⁵ @248nm	2.4 @ 2 MeV / 11.1 @ 3.2 MeV	1.2 @ 7.7 MeV	4 @ 2 MeV
rf frequency / MHz	1300	703.75	booster: 748.5	700

average power: ≤ 720 kW

gun in fabrication,

high power test in 2006

sim.

EPAC2004, ERL2005, Courtesy of AES+BNL+LANL

18

Emittance from ELSA@CEA

PITZ: RF Gun for VUV-FEL + XFEL

Goal parameters:	VUV-FEL	Europ. XFEL
pulsed / CW	pulsed	pulsed
single bunch charge	1 nC	1 nC
single bunch rep rate	1 – 9 MHz	5 MHz
length of bunch train	≤ 800 µs	≤ 650 µs
bunch train rep rate	1 – 10 Hz	10 Hz
average current	≤ 72 μA	≤ 32.5 μA
norm. trans. emittance (rms)	2 mm mrad @ 1 GeV	1.4 mm mrad @ 20 GeV
rf frequency	1.3 GHz	1.3 GHz
		diode-pumped

PITZ: RF Gun for VUV-FEL + XFEL

PITZ **Photo Injector Test Facility Zeuthen**

data

22

Thermal Emittance Measurements at PITZ:

Goals: • reach XFEL requirements: 0.9 mm mrad @ 1 nC from injector:

- increase RF field on photo-cathode
- improve laser system (mainly rise/fall time $\leq 2 \text{ ps}$)

study emittance conservation principle:

- booster cavity (preliminary: TESLA booster, final: CDS booster)
- new diagnostics beam line

in operation !

first preliminary emittance results (not optimized yet !)

Outlook:

- new gun cavity (#3) in Dec. 2005
- final booster in autumn 2006
- new laser system in spring 2007

data

BESSY FEL Injector Design

Emittance Record from SHI+FESTA

0.8

0.6

0.4

Gaussian"

• 1.6 cell S-band gun (\rightarrow 4 MeV) + 70 cm SW linac (\rightarrow 14 MeV)

• Ti:Saphire laser system (\rightarrow 50 fs long pulses at 800 nm) +

pulse shaping (e.g. gratings + liquid crystal spatial light mod.)

units

arb. 0.6

0.2

• temporal shape of laser pulses: (x-ray streak camera, resolution: ~2 ps)

rise / decay

limited by

time: 1.5 ps.

26

pulsed / CW	pulsed
single bunch charge	0.25 – 1.2 nC
single bunch rep rate	10 Hz
average current	2.5 – 12 nA
norm. horiz. emittance (rms)	~ 0.8 – 1.4 mm mrad @ 14 MeV

Methode: quad scan @ 14 MeV

F. Sakai et. al., ICFA WS 2002, SPring8 Frank Stephan (DESY) at Erice, October 2005

NC RF Gun Injector @ SPARC

PITZ Photo Injector Test Facility Zeuthen

gun type <mark>design</mark> parameters:	1.6 cell gun from UCLA	
pulsed / CW	pulsed	2.5 - Xrms(mm) - Yrms(mm)
single bunch charge	1.1 nC	2 - Exn (mm-mrad)
single bunch rep rate	1-10 Hz	
average current	1.1 – 11 nA	
norm. trans. emittance (rms)	< 2 mm mrad @ 155 MeV	
rf frequency	2.856 GHz	Parmela simulations ^{z(cm)}

Status: • full SPARC facility under installation • first beam beginning of 2006

more on SPARC: \rightarrow D. Alesini \rightarrow S. Dabagov

sim.

NC RF Gun Design for LCLS

- e.g. Eindhoven (DC + RF, waterbags, ...) \rightarrow J. Luiten, B. v.d.Geer
 - Argonne (e.g. planar focussing cathode)
 - AES (11.4 GHz, symmetric, NC RF gun, design: ~1 mm mrad @ 1 nC, 10 nA)
 - [SPring8 (special thermal emission injector for SCSS)]
 - [PSI (e.g. field emission cathode + diode acceleration + RF cavity)]

LEG @ PSI design parameters:		
single bunch charge	0.2 nC	
single bunch rep rate	10 Hz	
average current	2 nA]
norm. trans. emittance (rms)	< 0.1 mm mrad	!

Acknowledgements

(in order of appearance)

- Ch. Sinclair, Cornell
- J. Teichert, D. Janssen, FZ Rossendorf
- M. Krasilnikov, DESY
- D. Dowell, SLAC
- A. Todd, H. Bluem, J. Rathke, Advanced Energy Systems
- T. Srinivasan-Rao, I. Ben-Zvi, BNL
- D. Nguyen, LANL
- F. Marhauser, BESSY
- L. Catani, INFN
- G. Romain, PSI
- The PITZ group at Zeuthen

Summary

- Lots of different developments with photoinjectors fill up a large parameter space on beam quality, time structure of the beam and average currrent.
- Simulations predict very good performance of all three basic photo injector types (plus hybrids).
- Experimental progress is visible: on subsystems (guns, laser, diagnostics) and on measured beam quality.
- P. O'Shea, ICFA workshop @ UCLA in 1999:
 ~ "Get 1 µm @ 1 nC !!!"
 - → still to be done experimentally !!! → ways to reach this are defined.
- More research on emission process $(\rightarrow \epsilon_{th})$ gets important.