

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

H-Beam Cleaning of Metal Cathodes

David H. Dowell SLAC & LCLS

Introduction Cleaning and Measurement of Metal Cathodes Extraction of Work Functions Comparison with Theory Implementation into cathode processing and on gun

QE vs. Wavelength with Increased Exposed to H-Beam

Stanford Synchrotron Radiation Laboratory

Fowler Plots with increasing H-ion Exposure

100

Stanford Synchrotron Radiation Laboratory

Work function vs. exposure to H-beam

Theoretical Work Function: 3.9 eV: Hodges & Scott, Phys. Rev B7,73(1972) 4.1 eV: Lang & Kohn, Phys. Rev. B1,4555 (1970)

For a truly clean surface, the measured work function is in reasonable agreement with theory (~10-15% higher than theory)

Photoemission from a simple metal

Quantum Efficiency

Mean-Square Transverse Momentum

F

$$QE = (1-R) \frac{\sum_{fermi}^{E_{vac}} \int_{0}^{1} dE \int_{0}^{1} d(\cos\theta) \int_{0}^{2\pi} d\phi \ DOS_{F-D}(E_{fermi}, E)}{\int_{0}^{E_{vac}} \int_{0}^{1} dE \int_{0}^{1} d(\cos\theta) \int_{0}^{2\pi} d\phi \ DOS_{F-D}(E_{fermi}, E)}$$

$$p_{\perp}^{2} \rangle = \frac{\int_{e_{remi}}^{E_{vac}} dE \int_{\cos\theta_{max}}^{1} f(\theta) d(\cos\theta) \int_{0}^{2\pi} d\phi \ p_{\perp}^{2} DOS_{F-D}}{\int_{e_{rac}}^{E_{vac}} \int_{0}^{1} dE \int_{\cos\theta_{max}}^{1} d(\cos\theta) \int_{0}^{2\pi} d\phi \ DOS_{F-D}}$$

•QE dependents upon the reflectivity, the density of states and kinematical filtration

•Discrepancies between this simple model and observations for both QE and "thermal" emittance allow improved understanding of the emission process

> Stanford Linear Accelerato Center

Comparison of Measured and Computed QE vs, Wavelength

Possible Implementation on S-band Gun

Stanford Synchrotron Radiation Laboratory

Cathode Cleaners

H-lon Cleaning

+ XPS (contamination) and AFM (roughness) characterization of the surface

RF Plasma Cleaning of Gun & Cathode

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

Summary and Conclusions

H-beam and Plasma Cleaning is a promising technique for producing atomically clean surfaces

Excellent comparison with theory

Plans for implementing on the RF gun is in progress Cathode processing before installation In-situ processing

