

Time Dependent Emission from Metal Cathodes

John Schmerge, SLAC

October 10, 2005

- Motivation
 - Schottky Scan
 - Charge vs Laser Energy
- Emission Model
 - Assumptions
 - Theoretical QE
 - Theoretical Thermal Emittance
- Difference between Laser and Electron Pulse Shape
 - Flat top laser
 - Flat top electron beam
 - Chirp
- Other Effects
 - Cathode response time
 - Surface roughness

QE Measurement

- QE defined as ratio of number of electrons emitted to number of incident photons
- Measure charge on Faraday Cup 75 cm from cathode
 - Background subtraction and temporal gating to eliminate dark current
 - Solenoid used to focus electrons on to FC
- Measure laser energy on joule meter
 - 2% of laser energy picked off from window approximately 100 cm upstream of cathode for shot to shot energy measurement
 - Pickoff located upstream of vacuum window so measurement corrected for vacuum window transmission and in vacuum mirror reflectance

Schottky Scan

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Measured Charge vs Laser Energy

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Cathode Emission Model

- Schottky Effect included
 - Applied RF field (no field enhancement factor)
 - Space Charge field
- Electrons emitted from bulk material and no surface effects included
- Energy and Momentum Effects Included
 - Only electrons with sufficient momentum to overcome surface barrier are emitted
 - Model assumes Fermi-Dirac electron energy distribution
 - Photon bandwidth ignored (except when investigating laser chirp effects)
- Single photon absorption
- Electron-electron scattering ignored
- Flat planar surface
- No polarization effect other than reflectance

Fermi-Dirac Energy Distribution

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Metal Cathode Energy Levels

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

High Brightness Electron Beam Workshop, Erice Sicily

schmerge@slac.stanford.edu

High Brightness Electron Beam Workshop, Erice Sicily

schmerge@slac.stanford.edu

Theoretical Thermal Emittance

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Cu QE vs Wavelength in dummy gun (no rf)

Measured data courtesy of D.H. Dowell

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily John Schmerge, SLAC

Thermal Emittance as a Function of QE

Beam Current with Temporal Flat Top Laser Pulse

Laser Temporal Pulse with Flat Top Beam Current

Laser Temporal Pulse with Flat Top Beam Current Including Laser Chirp

Metal Time Response

- Prompt emission
- Exponential decay due to emission from below the surface following optical absorption
- Time constant for Cu is approximately 17 fs (optical skin depth is 25 nm)
- Scattering and the angular distribution will slightly modify the time constant

Surface Roughness

No effect on QE

- Will increase thermal emittance
 - Increases average transverse momentum of emitted electrons since electron distribution is peaked normal to the surface
 - Additional transverse momentum will be gained from transverse component of applied rf field
 - May explain part of discrepancy between theoretical and measured thermal emittance in metals

Theoretical Cu and Mg parameters

Parameter	Cu	Mg	Units
Work Function	4.59	3.66	eV
Schottky Reduction	0.28	0.25	eV
Fermi Energy	7.0	7.1	eV
Power Reflectivity	34	92	%
Skin depth	25	19	nm
QE	16	21	10-5
ε _{n-thermal}	0.25	0.46	µm/mm

October 10-14, 2005 High Brightness Electron Beam Workshop, Erice Sicily

Summary

- QE is time dependent in metal cathode due to strong Schottky effect
- Thermal emittance also time dependent since QE and thermal emittance are related
- Temporal shaping the laser pulse may be required to produce a flat top laser pulse
- Beam induced field can cancel the applied rf field variation in time
- Laser beam chirp also has strong effect
- Emission process not included in simulations

