Superconducting Photocathodes

BNL	DESY	SBU
J. Smedley	J. Sekutowicz	R. Lefferts
I. Ben-Zvi		A. Lipski
A. Burrill	INFN M. Ferrario	INS- wierk
T. Rao		J. Langner
JLAB	UNIÓD_	P. Strzy_ewski
P. Kneisel	K. Sza_owski	

Cathode Options for SCRF Injector

Use the niobium wall as a cathode

Simple, but low Nb QE limits current

J. Smedley, T. Rao, and Q. Zhao, J. Applied Physics 98, 043111 2005

Use an RF choke-joint to allow non-SC cathodes

Enables use of Cs₂Te (and others) D.Janssen et al., Nucl. Instr. And Meth. In Phys. Res. A445 (2000) 408-412.

Coat Nb in cathode region with another superconductor, with better QE

Comparison of Pb & Nb

Lead

Type I Superconductor

Used in Ion Accelerators

Critical Magnetic Field*: 80mT

Maximum Gradient*: ~17MV/m

Critical Temperature: 7.9K

Photoelectric Work Function: 3.95eV

Niobium

Type II Superconductor

Many Accelerator Applications

Critical Magnetic Fields*: 160mT, 300mT

Maximum Gradient *: >60MV/m

Critical Temperature: 9.2K

Photoelectric Work Function: 4.3eV

* Values for 2K, 1.3 GHz From: Basic Principles of RF Superconductivity and Superconducting Cavities, Peter Schmuser

Three Step Model of Photoemission

Excitation of e⁻ in metal

Energy distribution of excited e-

Reflection

Absorption of light

e--e- scattering

Direction of travel

Escape surface

Qvercome Workfunction

field (Schottky Effect)

Reduction of Φ due to applied

Nb Density of States

Electron and Photon MFP in Lead and Niobium

Predicted QE for Pb & Nb

QE Measurements

Cathode Preparation - Niobium

- Amorphous, RRR 250 Nb Cathodes
- Three surface preparations:
 - Mechanical polish (with diamond slurry)
 - Electropolishing
 - Buffered chemical polish
- In situ laser cleaning
 - Nd:YAG 4th harmonic (266 nm), 12 ps pulse, ~0.2 mJ/mm²
 - KrF Excimer (248 nm), 12 ns pulse, ~2 mJ/mm²

Nb Surface Finish

Buffered Chemical Polish

no laser cleaning

 $20 \ \mu m$

0.25 mJ/mm² 12 ps Nd:YAG (266 nm)

0.67 mJ/mm² 12 ps Nd:YAG (266nm)

Nb Surface Finish

Mechanical Polish Laser Cleaned 2.5 mJ/mm² 12 ns KrF (248 nm)

Laser Cleaning on Niobium

Cleaning with 12ps Nd: YAG (266 nm)

Laser Cleaning Energy Density [mJ/mm²]

Cathode Preparation - Lead

- Nb Cathodes used as substrate
- Four deposition methods:
 - Electroplating
 - Vacuum deposition (evaporation)
 - Sputtering
 - Vacuum Arc deposition
- Solid lead, mechanically polished
- In situ laser cleaning
 - KrF Excimer (248 nm), 12 ns pulse, ~0.2 mJ/mm²

Lead Surface Finish and Damage Threshold

Electroplated Lead

0.52 mJ/mm²

1.1 mJ/mm²

1.8 mJ/mm²

Surface Uniformity

All cathodes laser cleaned with 0.2 mJ/mm² of 248nm light

10 _m

Photoemission Results

Sputtered Lead

Cold Temperature QE

Previous measurements made at room temperature How will lead behave at cryogenic temperatures?

To find out, we mounted the cathode on a LN_2 cooled vacuum cold finger, capable of reaching -170 C

Electroplated and Arc Deposited

Structurally, the lead coatings were unaffected by multiple warm/cold cycles

Effect of Temperature and Vacuum on QE

Summary

- Niobium, although a great superconductor, is a relatively poor photocathode
- For moderate average currents, SC lead plating the cathode may be an attractive alternative to niobium
- QE_{266nm}=0.035%, QE_{213nm}=0.27%, QE_{190nm}=0.55%
- Cold temperature operation is not a problem, as long as vacuum is good
- For higher average currents, an RF choke assembly can be used to accommodate high-QE cathodes