

Compression Studies at the ATF with the UCLA-BNL Chicane

Gerard Andonian Particle Beam Physics Laboratory University of California Los Angeles

The Physics and Applications of High Brightness Electron Beams Erice, Sicily October 9-14, 2005

Collaboration

- UCLA
 - R. Agustsson, G. Andonian, A. Cook, P. Frigola, A. Murokh, S. Reiche, J. Rosenzweig, G. Travish, F. Zhou
- BNL-ATF
 - M. Babzien, I. Ben-Zvi, K. Kusche, R. Malone, M. Woodle, V. Yakimenko
- INFN-LNF
 - G. Palumbo, C. Vicario
- Univ. Milano
 - A. Flacco

Outline

- Motivation
- Technical Specifications
- Coherent Transition Radiation (CTR)
 - Recent Data
- Coherent Edge Radiation (CER)
 - Theory overview
 - Simulations
 - Preliminary Results
- Outlook

Motivation

- Generation of compressed sub-micron beams
 - Study radiative effects (CSR, CER) emitted from short beams
 - Continue UCLA Neptune compressor physics studies in acceleration field dominated regime (space charge -> coherent radiation)
 - May greatly impact performance of future compressors and FELs (e.g. microbunching instability)
 - Use CER as non-destructive bunch length monitor

Parmela-Elegant simulation longitudinal phase space of beam, with compression from 50A to 1.5 kA.

Compressor

- Designed and Constructed at UCLA
 - Modeled with Amperes
 - Engineering + safety concerns addressed by ATF
- Installed and operational at ATF
 - Add to ATF core capabilities
 - Compress from 350 μm 20 μm
- Extensive Simulation work
 - TREDI, Field-Eye, Parmela, Elegant

CTR Measurement

- Michelson Interferometer
 - Commercial Product
 - Compact Footprint
 - Convenient Alignment
 - Resolution : 10 μ m 1.5 mm (rms)
- Observe CTR from insertable foil
 - Golay Cell detectors
 - Autocorrelation
- UCLA time-domain methods (fitting) and data acquisition

CTR Data

- Recent CTR data
 - Beam core compression not strongly dependent on phase
- UCLA Fitting technique
- $\sigma = 27 \ \mu m \ (rms)$
- Use double Gaussian
 - Reproduces expected pulse shape (ramped with tail)

CER Experiment

- Radiation collected from boundary region of dipoles 3-4
 - 7 m transport
- New regime for Edge Radiation
 - <50 micron wavelength</p>
- Cold Bolometer
 - 4.2 K Si bolometer (IR Labs)

CER Overview

- Comparison to CSR
 - Not well distinguished from CSR at short wavelengths
 - Like CTR at long wavelengths
 - Radial polarization

Chubard, Smolyakov, J. Optics 24 (1993) 117

- CER calculations
 - Modeling with :
 - Semi-analytical
 - Field-Eye

CER Results

- CTR+CER as a function of rf phase
 - Max signal -19 deg off crest
 - 11 deg forward of min momentum spread
- Polarizer
 - Radial polarization
- Filters
 - Reconstruct spectrum

Momentum Spread

- Observation of bifurcation
 - Momentum spectrum
 - Strong breakup of momentum distribution at phase of full compression
 - Currently being studied with TREDI code

Image of beam in spectrometer (horizontal is bend plane).

Min. energy spread and no compression - 9 deg fwd of crest (left); Max. compression -19 deg fwd of crest (right).

Transverse Effects

- Tomography
 - Quadrupole scanning tomography developed at ATF
- Operating parameters
 - Energy = 60 MeV
 - Charge = 200 pC
- Mild bifurcation observed
 - Space charge forces giving phase space bifurcation are alleviated at this energy

Bend plane is along vertical axis. Reconstructed phase space plots for under-, full-, and over- compression

F. Zhou *et al.*, <u>Experimental Characterization of 4-D Transverse</u> <u>Phase Space of a Compressed Beam</u>, PAC 2005 Proceedings

Conclusions

- Summary
 - Chicane compressor installed and commissioned
 - Compressor provides a rich data set
 - CTR, CER, momentum spread, tomography
 - Simulations need to catch up
 - Microscopic physics model
- Future Run Plans
 - CER filter measurements
 - Improved CER polarizer measurements
 - Compare to models (Field-Eye)