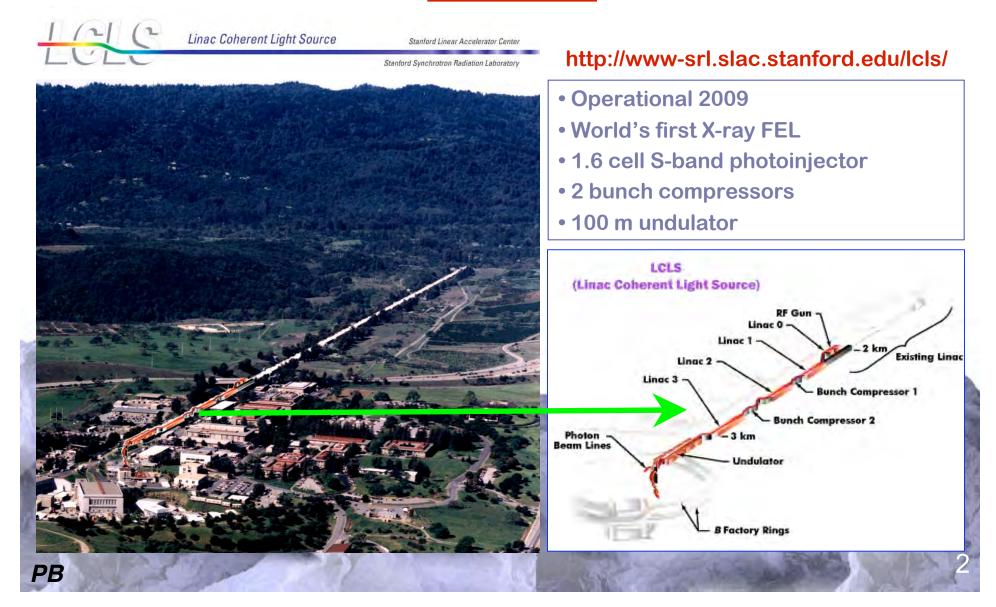


50


PR

M. Dunning G. Travish J.Rosenzweig Particle Beam Physics Lab UCLA Dept. of Physics Los Angeles, CA 90095 September 21, 2005

mdunning@physics.ucla.edu

Intro: The LCLS Beamline

Intro: The LCLS

Relevant Parameters

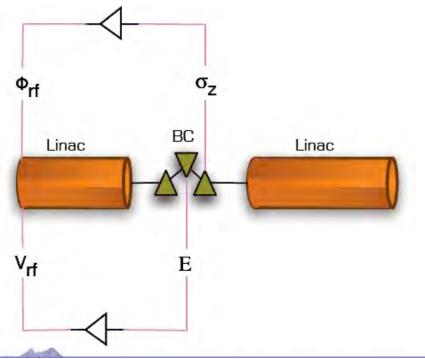
	<u>1.0 nC</u>	<u>0.2 nC</u>	
Nominal electron energy, BC1	0.25	0.25	GeV
Nominal electron energy, BC2	4.3	4.3	GeV
Peak current	3400	2500	Α
Nominal RMS bunch length, BC1	200	60	μm
Nominal RMS bunch length, BC2	20	8	μm
Nominal RMS bunch duration, BC1	667	200	fs
Nominal RMS bunch duration, BC2	67	27	fs
Max single bunch repetition rate	120	120	Hz

Intro: The Problem

- High-quality lasing: tight beam parameters
 - Longitudinal feedback systems needed (along with other diagnostics and feedback systems)
 - Bunch length
 - Energy
- PBPL to build <u>bunch length</u> monitor system
 - System will consist of two grating polychromators, one at each bunch compressor (explained later)

Intro: Possible Solutions

- Streak Camera
- Interferometer
- Electro-Optic Techniques
- RF Deflecting Cavity
- Polychromator (Spectrometer) (more later)



Intro: System Requirements

- Only relative bunch length is needed- not absolute bunch length
- Need two bunch length monitors- one at each bunch compressor[1]
- Single-shot
- Non-invasive
- Maintenance free for several days
- Possibility to run at 120 Hz
- Single-shot measurement resolution: 1-2 % of nominal bunch length
- Long term signal drift: <2% over ~24 hours

[1] J. Wu et al., SLAC-PUB-11276, May 2005.

Intro: Phase Feedback

Observables

- Bunch length σ_z
- Energy E

Controllables

- Linac voltage V_{rf}
- Linac phase φ_{rf}

• LCLS longitudinal feedback: 2 bunch length loops

• BC1 bunch length \rightarrow Linac 1 RF phase

• BC2 bunch length \rightarrow Linac 2 RF phase

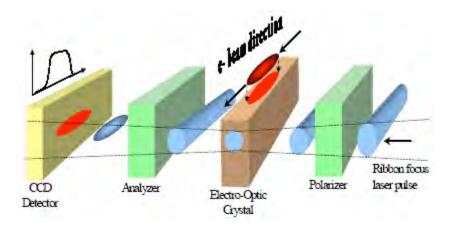
Streak Cameras

- + Single-shot
- + Wide dynamic range
- Limited by temporal resolution (~200 fs at best)
- Trigger jitter

Hamamatsu "FESCA-200" (Femtosecond Streak Camera). Temporal resolution: 200 fs.

Interferometers

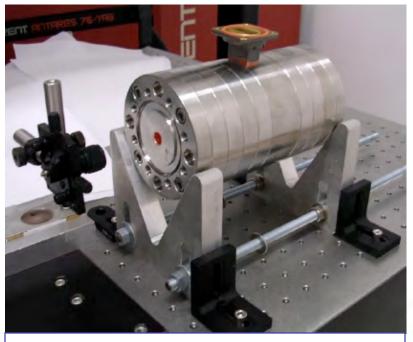
- + Can be single-shot
- + High temporal resolution
- + Compact
- Narrow dynamic range
- Complex



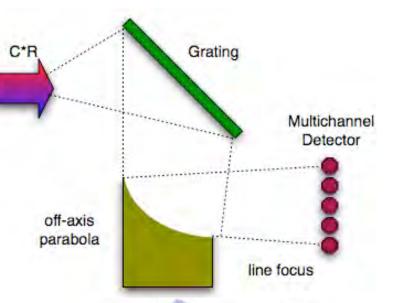
RadiaBeam Technologies BLIS (Bunch Length Interferometer System)

http://www.radiabeam.com/products/diagnostics/blis.html

Electro-Optic Methods


- + Single-shot
- + Non-invasive (?)
- + Temporal resolution
- Not yet mature
- Require expensive
 - femtosecond lasers

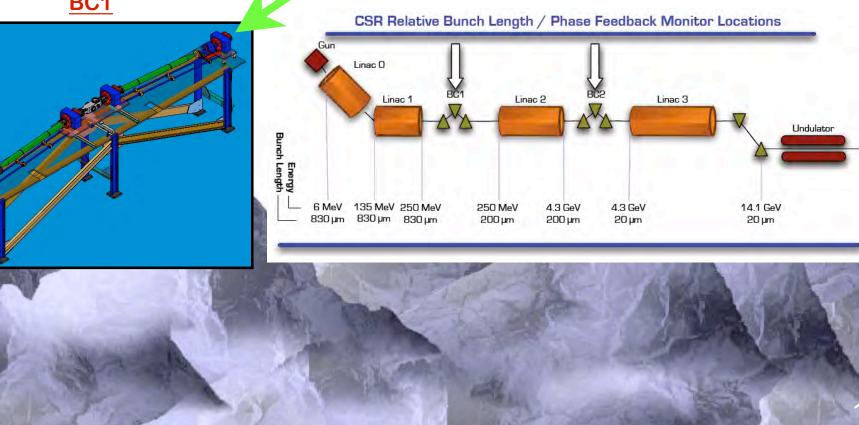
P. Bolton et al., SLAC-PUB-9529. Transverse probe geometry produces a spatial image of the bunch. Also see:


Also see: http://www.rijnh.nl/users/berden/ebunch.html

- **RF Deflecting Cavities**
 - + Single shot
 - + Femtosecond resolution
 - May require separate RF system
 - Invasive (destroy measured shot)

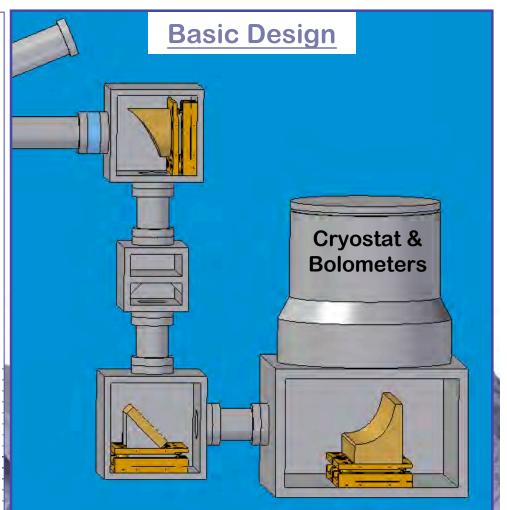
The UCLA 9-cell X-band standing wave deflecting cavity. Courtesy Joel England.

- Polychromators
 - + Single-shot
 - + Temporal resolution
 - + Robust
 - Require relatively expensive detector & vacuum system

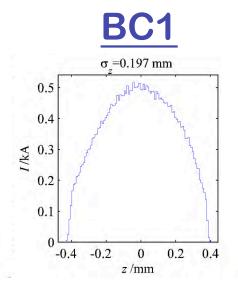

Possible Solutions Summary

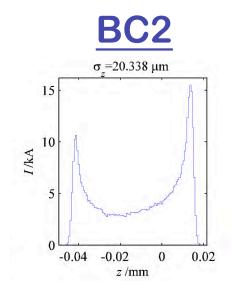
	Single-shot	Non- Invasive	Good Temporal Resolution	Maintenance Free
Streak Camera	Y	Y	Ν	Y
Interferometer	Y	Y	Y	N
Electro-Optic	Y	Y (?)	Y	Y (?)
RF Deflector	Y	Ν	Y	N
Polychromator	Y	Y	Y	Y

Single-Shot Spectrometer Bunch length monitor locations


After 4th chicane magnet of BC1, BC2

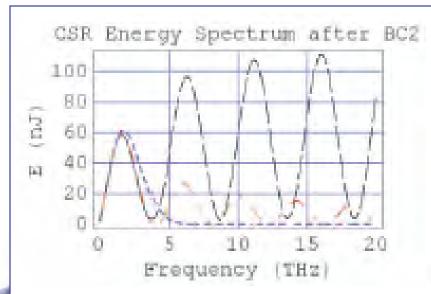
<u>BC1</u>




Single-Shot Spectrometer Design

- Use CSR/CER from bunch compressor chicane magnets
 - → Vacuum port window
 - → Focusing/turning mirror
 - → Entrance slit
 - → Grating
 - → Off-axis parabola (line focus)
 - Multichannel detector (linear array of cryogenically cooled bolometers)

Single-Shot Spectrometer Bunch Distributions



- Smooth parabolic distribution
 - + Simple CSR spectrum

- Wake-induced double-horn
 - Complicated CSR spectrum

Single-Shot Spectrometer Challenge: BC2 CSR Spectrum

CSR energy spectrum after BC2. Black curve: double-horn distribution Blue curve: Gaussian distribution Red curve: step function

From J. Wu, et al., SLAC-PUB-11275, May 2005.

• Double-horn distribution complicates CSR spectrum

- Similar to Gaussian below 4 THz

- Stay below 4 THz

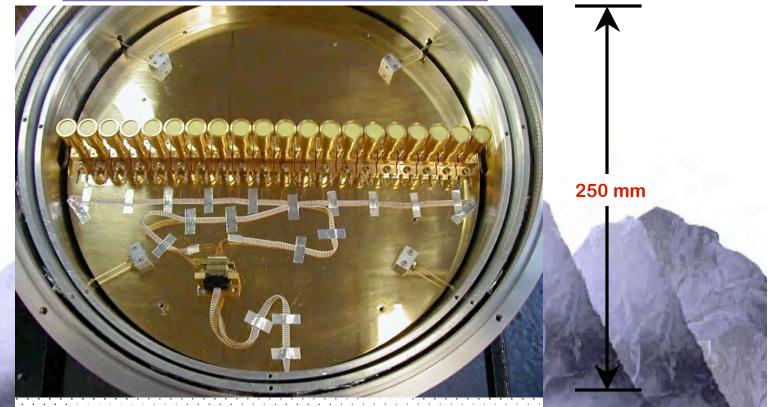
Single-Shot Spectrometer Challenge: Detectors

BC1

- Frequency range: 150-500 GHz
- ~ 20 channels
- Easy, but big
 - large vacuum chamber
 - large optics
- InSb hot electron bolometers

BC2

- Frequency range: 1-4 THz
- ~ 20 channels
- More challenging than BC1
- Needs special filtering
- Thermal composite bolometers?
- Need to research more

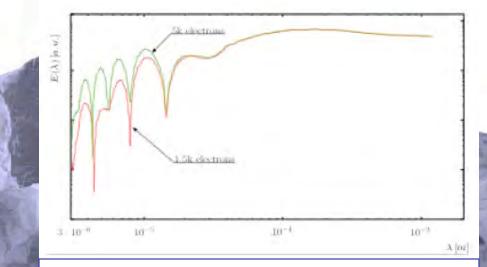


Single-Shot Spectrometer Challenge: Beamline Integration

- Low-loss vacuum port window over desired frequency range (Diamond?)
- Cryostats: liquid helium & nitrogen
 - Helium hold time (weeks?)
 - Closed-cycle nitrogen system (Sterling Engine?)
 - Windowless enclosure for detector system

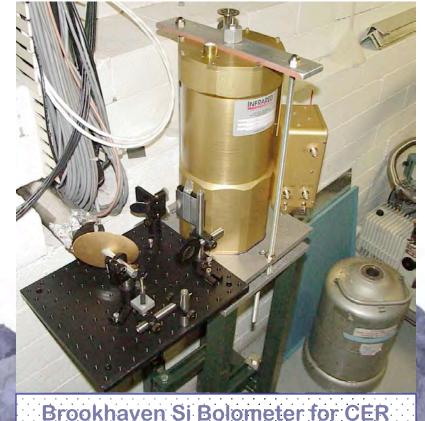
Single-Shot Spectrometer BC1 Detector Assembly

- InSb hot-electron bolometers
- 10 liter cryostat
- Helium hold time: 4-6 weeks!



20-channel linear array of InSb hot-electron bolometers, courtesy QMC Instruments.

Conclusion Some work done so far... Brookhaven CER work



UCLA built ATF compressor.

Simulated CSR spectrum fron FieldEye, a post-processor of TREDI.

PB

Brookhaven Si Bolometer for CER detection.[1]

Ref: G. Andonian, this workshop.

Conclusion Workplan

- Simulate CR exiting vacuum ports of BC1, BC2 & arriving at detector
 - TREDI/FieldEye simulations (in progress)
- Choose detector type
 - Finalize bolometer evaluations
 - SLAC to purchase
- Continue to study system
 - Windowless vacuum enclosure
 - Dynamic range (grating, *in situ* tuning)
 - Calibration methods
 - Mechanical design & beamline integration with SLAC
 - CAD design work
 - Finalized by SLAC
 - Test system (SPPS or APS Linac)