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strong, scaling as
Beam density
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Beam shaping  beyond the beer-canBeam shaping  beyond the beer-can

 Uniform beam = optimum emittance
compensation?
 Not even theoretically…

 “Beer-can” beam suffers from
 Edge erosion, non-uniform distribution
 Nonlinear fields at edges
 Severe practical difficulties with laser

 Luiten-Serafini proposal:
 Use any temporally shaped ultra-short pulse
 Longitudinal expansion of well-chosen shaped

radial profile

 Uniform ellipsoidal beam dynamically created!
 Linear space-charge fields (3D)
 Radial shaping need only be approximate
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 classic emittance compensation? Issues:
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Positive
Laser very forgiving
Excellent transverse and longitudinal phase space
Shorter pulses possible?

Negative
Cathode image charges drive incorrect final state

(~one-sided ellipsoid)
Larger energy spread during compensation
Charge fluctuations somewhat more important

Experiments at LLNL, ORION, SPARC? Next talk
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Longitudinal dynamicsLongitudinal dynamics

Assume no radial motion over time of
interest

Energy and energy gain
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Large γ, with z held constant
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Case of large expansionCase of large expansion
To have a final state dominated by

space-charge, we have             and

This distribution is
Uniform current density
Uniform charge density
Independent of initial conditions, as long is

initial beam is short (in practice <200 fs)
This is a general characteristic of

plasma rearrangement; uniform density
inside of a Debye length from surface
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Beam shapeBeam shape

Look at expansion of beam edge (front)
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The optimum beam distribution
and emittance compensation
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Uniformly-filled ellipsoid is optimum beam shape
Linear space charge forces in all 3D

There is emittance growth during rearrangement
process

Process is in any case imperfect
Image charges, laser imperfections…

We need emittance compensation
Can the two schemes be married?
Can existing hardware be adopted?
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 PARMELA (UCLA) study
 Computationally intensive problem

 Standard SPARC injector (LCLS Ferrario-Scenario) ) conditions
 120 MV/m peak on-axis field
 2700 G solenoid
 Post-acceleration in SLAC TW section, 13.5 MV/m, Bz=560 G

 Beam initial conditions chosen to:
 Avoid image charge effects (σb (α) limit)
 Produce emittance compensation
 These are slightly at odds…

 Parameters:
 Q=0.33 nC
 Initial longitudinal Gaussian σt =33 fs (cutoff at 3 σ)
 Transverse Gaussian with σx =0.77 mm (cutoff at 1.8 σ).
 Launch at 33 degrees to mitigate energy spread — bad for compensation

 Note: no challenge to laser parameters, need not have perfect radial profile

 PARMELA (UCLA) study
 Computationally intensive problem

 Standard SPARC injector (LCLS Ferrario-Scenario) ) conditions
 120 MV/m peak on-axis field
 2700 G solenoid
 Post-acceleration in SLAC TW section, 13.5 MV/m, Bz=560 G

 Beam initial conditions chosen to:
 Avoid image charge effects (σb (α) limit)
 Produce emittance compensation
 These are slightly at odds…

 Parameters:
 Q=0.33 nC
 Initial longitudinal Gaussian σt =33 fs (cutoff at 3 σ)
 Transverse Gaussian with σx =0.77 mm (cutoff at 1.8 σ).
 Launch at 33 degrees to mitigate energy spread — bad for compensation

 Note: no challenge to laser parameters, need not have perfect radial profile

Initial PARMELA simulation studyInitial PARMELA simulation study



 Final bunch length 1.3 mm (full), 105 A peak current.
 Some longitudinal asymmetry due to image charge
 Small artifact from non-ideal radial/long. profile; transverse space-

charge
 At low energy (only) the ellipsoidal beam shape is visible

 Transition to emittance dominated regime destroys shape (it is no longer
needed!)
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Beam distribution at high energy shows
Boundary collapse (84.5 MeV)

  
  

Artifact of initial conditionsImage charge effect



Emittance compensation excellentEmittance compensation excellent

 Emittance evolution slightly
different than standard scenario
 Later turn-on of transverse space-

charge
 Delay of plasma oscillations
 Enhance solenoid in TW section to

speed up oscillations

 Final emittance <0.7 mm mrad!
 Excellent performance at much

higher current than standard
operation: 105 A vs. 48 A
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Beam size evolution 

RMS emittance evolution 
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Longitudinal phase space advantagesLongitudinal phase space advantages
 Initial fast — but not large — longitudinal emittance growth due

to rearrangement/expansion
 Shortest pulse possible given E-field
 Extremely small final energy spread

 Shorter beam
 Approx. linear space charge (linear chirp contribution)

 Excellent compression! Use as diagnostic of SC forces
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Energy spread evolution Longitudinal phase space after compression
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Maximum brightnessMaximum brightness

This scheme produces higher brightness
than standard LCLS-like designs
Is it the optimum?

What is maximum brightness in this
scheme?
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Note: independent of charge! Make cathode temp small…



Experimental outlookExperimental outlook

We are looking at several appropriate
photoinjectors:
LLNL PLEIADES:

Proposed w/S. Anderson for LDRD
non-optimized scenario
difficult funding of machine at present…

SLAC NCLTA (“ORION”, “E163”)
We want higher involvement, including TW undulator FEL
Good for program, including laser acceleration.
Winter 2005

SPARC (Frascati)
Optimized environment
Also Fall 2005
Discuss from this perspective (…grazie a Pietro M. e Carlo V.)
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Time-resolved measurements at low energy

Aerogel-based Cerenkov measurements

RF deflector-based measurements
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Non-uniform cathode emission
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