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Space-charge and emittance growthSpace-charge and emittance growth

The self-fields in electron sources are
strong, scaling as
Beam density
γ-2

Emittance growth arises from
Non-uniformity of defocusing in t (z)
Nonlinearity in r
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Beam shaping  beyond the beer-canBeam shaping  beyond the beer-can

 Uniform beam = optimum emittance
compensation?
 Not even theoretically…

 “Beer-can” beam suffers from
 Edge erosion, non-uniform distribution
 Nonlinear fields at edges
 Severe practical difficulties with laser

 Luiten-Serafini proposal:
 Use any temporally shaped ultra-short pulse
 Longitudinal expansion of well-chosen shaped

radial profile

 Uniform ellipsoidal beam dynamically created!
 Linear space-charge fields (3D)
 Radial shaping need only be approximate
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“Forgiveness” in distributions“Forgiveness” in distributions

Luiten: little effect of
longitudinal pulse
shape
What are limits in

initial length?
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 classic emittance compensation? Issues:
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Positive
Laser very forgiving
Excellent transverse and longitudinal phase space
Shorter pulses possible?

Negative
Cathode image charges drive incorrect final state

(~one-sided ellipsoid)
Larger energy spread during compensation
Charge fluctuations somewhat more important

Experiments at LLNL, ORION, SPARC? Next talk
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Longitudinal dynamicsLongitudinal dynamics

Assume no radial motion over time of
interest
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Asymptotic limitAsymptotic limit

Large γ, with z held constant

Drop constant z (“screen” positon)
Mapping can be used to calculate

current density
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Case of large expansionCase of large expansion
To have a final state dominated by

space-charge, we have             and
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This is a general characteristic of
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inside of a Debye length from surface
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The optimum beam distribution
and emittance compensation
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Uniformly-filled ellipsoid is optimum beam shape
Linear space charge forces in all 3D

There is emittance growth during rearrangement
process

Process is in any case imperfect
Image charges, laser imperfections…

We need emittance compensation
Can the two schemes be married?
Can existing hardware be adopted?
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 PARMELA (UCLA) study
 Computationally intensive problem

 Standard SPARC injector (LCLS Ferrario-Scenario) ) conditions
 120 MV/m peak on-axis field
 2700 G solenoid
 Post-acceleration in SLAC TW section, 13.5 MV/m, Bz=560 G

 Beam initial conditions chosen to:
 Avoid image charge effects (σb (α) limit)
 Produce emittance compensation
 These are slightly at odds…

 Parameters:
 Q=0.33 nC
 Initial longitudinal Gaussian σt =33 fs (cutoff at 3 σ)
 Transverse Gaussian with σx =0.77 mm (cutoff at 1.8 σ).
 Launch at 33 degrees to mitigate energy spread — bad for compensation

 Note: no challenge to laser parameters, need not have perfect radial profile
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 Final bunch length 1.3 mm (full), 105 A peak current.
 Some longitudinal asymmetry due to image charge
 Small artifact from non-ideal radial/long. profile; transverse space-

charge
 At low energy (only) the ellipsoidal beam shape is visible

 Transition to emittance dominated regime destroys shape (it is no longer
needed!)
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Beam distribution showing 
ellipsoidal boundary (12.5 MeV)

Ellipsoidal beam in simulationEllipsoidal beam in simulation

Beam distribution at high energy shows
Boundary collapse (84.5 MeV)

  
  

Artifact of initial conditionsImage charge effect



Emittance compensation excellentEmittance compensation excellent

 Emittance evolution slightly
different than standard scenario
 Later turn-on of transverse space-

charge
 Delay of plasma oscillations
 Enhance solenoid in TW section to

speed up oscillations

 Final emittance <0.7 mm mrad!
 Excellent performance at much

higher current than standard
operation: 105 A vs. 48 A
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Beam size evolution 

RMS emittance evolution 
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Longitudinal phase space advantagesLongitudinal phase space advantages
 Initial fast — but not large — longitudinal emittance growth due

to rearrangement/expansion
 Shortest pulse possible given E-field
 Extremely small final energy spread

 Shorter beam
 Approx. linear space charge (linear chirp contribution)

 Excellent compression! Use as diagnostic of SC forces
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Energy spread evolution Longitudinal phase space after compression
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Maximum brightnessMaximum brightness

This scheme produces higher brightness
than standard LCLS-like designs
Is it the optimum?
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We are looking at several appropriate
photoinjectors:
LLNL PLEIADES:

Proposed w/S. Anderson for LDRD
non-optimized scenario
difficult funding of machine at present…

SLAC NCLTA (“ORION”, “E163”)
We want higher involvement, including TW undulator FEL
Good for program, including laser acceleration.
Winter 2005

SPARC (Frascati)
Optimized environment
Also Fall 2005
Discuss from this perspective (…grazie a Pietro M. e Carlo V.)
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Experimental signatures
Configuration space
Phase spaces

Experimental realities
Cathode emission time
Laser intensity/handling issues

Measurement issues (SPARC context)
Time-resolved measurements at low energy

Aerogel-based Cerenkov measurements

RF deflector-based measurements
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Non-uniform cathode emission
Velocity bunching a la Serafini-Ferrario
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