October 10, 2005 ICFA Workshop on The Physics and Applications of High Brightness Beams

"Medical Application of Multi-beams Compton Scattering Monochromatic Tunable Hard X-ray Sources"

> Nuclear Professional School University of Tokyo

> > Mitsuru Uesaka

### Staged Development of Compact Accelerator at University of Tokyo

S-band Linear Accelerators

RF 2.856 GHz

Gradient 10 MV/m

X-band Linear Accelerator

RF 11.424 GHz

Gradient 40 V/m



Moving arm

X-bandpower

User Facility

Application:Radiation Chemistry/Physics, Beam Physics

Size: Building

Proto-type Development

Application:Dual-Energy/Subtraction Xray CT for Medical Use

Size: Room

Laser Plasma Accelerator

RF 10~100 THz

Gradient ~ 100GV/m



Moving stage(bed)

2D X-ray detector

Beam Physics

Size: Table-top

### Development of Advanced Compact Accelerators





### Monochromatic Hard X-ray by Compton Scattering



 $\lambda_{\gamma} \leq 1 \dot{A}$  (X-ray)

## First and Second Generation Inverse Compton Scattering X-ray Sources

First Generation

MXI Sys/Vandervilt, PLEADES, U.Tokyo/KEK/JAERI, Sumitomo etc.

- -Single-electron-single-laser Compton scattering
- -First demonstration and application
- -Intensity up to only 10<sup>6</sup> photons/s
- -Rather large fluctuation due to the time-jitter between electron and laser pulses

Second Generation

U.Tokyo, Lyncean Tech.(R.Ruth), Sumitomo/AIST, etc.

- -Multi-scattering of electron- and laser-pulses
- -Intensity of more than 10<sup>8</sup> photons/s
- -A variety of applications for medicine, protein structural analysis, security and nuclear engineering

## Performance of Linac/Laser Inverse Compton X-ray Source

| Laboratory                                    | Electron<br>Energy | Charge                          | Wavelength & Power<br>of Laser          | X-ray Energy &<br>Intensity         | Uncertaint<br>y of X-ray<br>Intensity |
|-----------------------------------------------|--------------------|---------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------|
| SHI <sup>[1]</sup>                            | 14 MeV<br>(S-band) | 400 pC<br>Single Bunch          | 800nm, 300 mJ,<br>(Ti:Sapphire, 300 ps) | 3.5 keV<br>< 1.0E+4<br>photons/shot | 50%                                   |
| MXI Systems<br>Inc <sup>[2]</sup>             | 25 MeV<br>(S-band) | 500 pC<br>Single Bunch          | 1 μm, 20 J (Nd:Glass)                   | 12~50 keV<br>1.0E+8<br>photons/sec  | 50%                                   |
| LLNL <sup>[3]</sup>                           | 57 MeV<br>(S-band) | 250 pC<br>Single Bunch          | 780 nm, 400 mJ<br>(Ti:Sapphire, fs)     | 40~80 keV<br>1.0E+7<br>photon/ssec  | 50%                                   |
| SLAC                                          | 60 MeV<br>(S-band) | 500 pC<br>Single Bunch          | 800 nm, 300 mJ<br>(Ti:Sapphire, fs)     | 20~85 keV<br>1.0E+8<br>photons/s    | 80%                                   |
| Univ. of<br>Tokyo<br>/NIRS/KEK <sup>[4]</sup> | 35 MeV<br>(X-band) | 20<br>pC×10000<br>Multi Bunches | 1 μm, 2 J,<br>(Nd:YAG, 10 nsec)         | 33 keV<br>1.0E+8<br>photons/s       | <10%                                  |

[1] :M.Yorozu *et al.* Jpn.J.Appl.Phys., Vol.40 (2001) pp. 4228-4232

[2] :F.E.Carroll et al. Am.J.Rentgenol. 181 (2003) 1197

[3] :W.J.Brown et al. Phys.Rev.Lett.Vol.7 060702 (2004)

[4] :K.Dobashi et al. Jpn.J.Appl.Phys., Vol.44 (2005) pp. 1999-2005

## Performance of Typical Monochromatic Tunable Hard X-ray Source

| Laboratory                             | Source of<br>X-ray    | Changing method<br>of X-ray Energy | X-ray<br>Intensity                   | Changing<br>time        | Intensity<br>Fluctuation |
|----------------------------------------|-----------------------|------------------------------------|--------------------------------------|-------------------------|--------------------------|
| KEK,<br>SPring-8, etc                  | SR                    | Diffraction grating                | 10 <sup>11</sup><br>photons/s<br>ec  | ~ 10 min.               | < 10 %                   |
| lwate Med. Univ<br>,etc <sup>[5]</sup> | Discharged<br>Plasma  | Electrode                          | ~ 10 <sup>6</sup><br>photons/s<br>ec | $\sim$ hours            | ?<br>(Unknown)           |
| Univ. of Tokyo<br>/NIRS/KEK            | Compton<br>Scattering | Wavelength of<br>Laser             | 10 <sup>8</sup><br>photons/s<br>ec   | ~ 40 msec<br>( @ 25 Hz) | < 10 %                   |

[5] :M. Sagae et al. Jpn.J.Appl.Phys., Vol.44 (2005) pp. 446-449

### **Compton scattering hard X-ray source**

#### Compact hard X-ray source based on Compton Scattering

Properties of the generated X-ray



#### Electron beam energy : 35 MeV, Charge : 20 pC/bunch

| Laser wavelenght (nm)       | 1064                                   | 532                    |                  |
|-----------------------------|----------------------------------------|------------------------|------------------|
| Pulse energy (J/pulse)      | 2.5                                    | 1.4                    |                  |
| X-ray yield (photons/pulse) | 9.9x10 <sup>6</sup> (10 <sup>8</sup> ) | 4.4x10 <sup>6</sup> (1 | 0 <sup>8</sup> ) |
| Maximum X-ray energy (keV)  | 21.9                                   | 43.8                   |                  |
| Energy spread (%) rms       | 1-                                     | 10                     |                  |

Details are in RPAP006 and WPAP019

10 pps with laser circulation

The X-ray energy can be changed quickly (40ms) by introducing two lasers









## System of Beam-Experiment



### Laser circulation system





## Applications

- Static/dynamic imaging by 100 µm spatial resolusion
- Dual energy X-ray CT to get 3D distributions of atomicnumber- and electron-densities for light atoms up to <sup>43</sup>Tc
- Subtraction CT across the K-edge to get 3D distribution of specified atoms
- Protein structural analysis

#### **Energy differences in a finger**

#### or in a body, such as a mouse





19 keV

29 keV





Energy movie from 15 keV to 33 keV

We have the ability to specifically tune the X-rays to the imaging task at hand.



#### Stylized diagram of an atom:



Each electron is bound in its orbit by a characteristic energy for that particular atom/ orbit. This is called its binding energy. The binding energy is different for each atom in the periodic chart.

Our beam can be tuned to just the right energy to knock the kshell electron out of its orbit. For the Iodine atom that energy is 33.2 keV.



Ultra Micro-vessel Angiography for Diabetic Femur and Thrombus @ NCVC (National CardioVascular Center)

X-ray tube (50kVp) with highsensitivity HARP camera HARP (High-gain Avalanche Rushing amorphous Photoconductor) camera







Micro-vessels visualized by contrast agent



Imaging area: 20cm × 20cm Space resolution: 25 μm

## Ultra Micro-vessel Angiography by Compact Monochromatic Hard X-ray Source

Compact hard X-ray source **Ultra Mico-vessel angiography** based on electron-laser collision by monochromatic hard X-ray •30 images/s 10 times circulated laser colliding with electron •Space resolution: 25 μm Expected photon intensity Required photon intensity  $2 \times 10^7$  bhotons/mm<sup>2</sup>/s @33- $4.8 \times 10^{10}$  photons/mm<sup>2</sup>/s @33-35 keV 1  $\times$  10<sup>7</sup> photons/mm<sup>2</sup>/s  $35 \text{keV} 4.8 \times 10^9 \text{ photons/mm}^2/\text{s}$ @51-54keV @51-54keV Angiography by the compact hard X-ray source High-sensitivity HARP camera Angiography can be Photon intensity is reduced 10 images/s performed!

•Pixel size (100  $\mu$ m  $\times$  100 $\mu$ m)

(Space resolution: 100 μm)

### Future plan to perform ultra micro-vessel angiograpphy

High power laser (7J/pulse), 40 times circulated laser, Wide length of electron macro pulse and Small light spot (25  $\mu$ m diameter) etc... -> Space resolution: 25  $\mu$ m

### 3D Evaluation of Atomic Number Distribution

### 1. Light Atoms up to <sup>43</sup>Tc

- Interpolation of the X-ray attenuation constant between charateristic edges is available.
- 3D distributions of the atomic number density and electron density can be obtained
- Their spatial resolution is determined by the X-ray source size.

### 2. Heavy Atoms

- The interpolation does not work.
- Subtraction CT gives 3D distribution of specified atoms.

Linear attenuation coefficient is approximately written as a function of Z and E

$$\mu \cong \rho \frac{N_{\mathrm{A}}}{A} Z \left( 4\sqrt{2}Z^{4} \alpha^{4} \left( \frac{mc^{2}}{E} \right) \phi_{0} \sum_{nll'} f_{nll'} + \sigma_{\mathrm{KN}} + \frac{Z \left( 1 - Z^{b-1} \right)}{Z^{\prime 2}} \sigma_{\mathrm{SC}}^{\mathrm{coh}}(Z', E') \right)$$
$$= \rho_{\mathrm{e}} \left( Z^{4} F \left( Z, E \right) + G \left( Z, E \right) \right)$$

$$ho$$
: mass density  
 $N_A$ : Avogadro's number  
 $\sigma_{KN}$ : Klein-Nishina cross section  
 $\sigma_{SC}$ : Coherent scattering cross section  
of standard element Z'  
 $Z'=8$  (Oxgen) and  $E'=(Z'/Z)^{1/3}E$ 

Effective atomic number and electron density are derived from linear attenuation coefficients for two energies  $\mu(E_{*})G(Z)$ 

$$\mu(E_1) = \rho_e(Z^4 F(Z, E_1) + G(Z, E_1))$$
  
$$\mu(E_2) = \rho_e(Z^4 F(Z, E_2) + G(Z, E_2))$$

Effective atomic  
number
$$Z^{4} = \frac{\mu(E_{2})G(Z, E_{1}) - \mu(E_{1})G(Z, E_{2})}{\mu(E_{1})F(Z, E_{2}) - \mu(E_{2})F(Z, E_{1})}$$
Electron density
$$\rho_{e} = \frac{\mu(E_{1})F(Z, E_{2}) - \mu(E_{2})F(Z, E_{1})}{F(Z, E_{2})G(Z, E_{1}) - F(Z, E_{1})G(Z, E_{2})}$$



### Dual-energy X-ray CT by SR light sources

Electron density and atomic number have been measured for biological materials consist of light elements (Z<20) [1,2]



Precise electron density can be measured in agreement with 1 % of the theoretical values

(X-ray energy : 40 keV, 70 keV)

Volume data of a rat are constructed

(X-ray energy : 40 keV, 70 keV)

#### Volume rendering of a rat



Torikoshi(NIRS) et al.

#### **Dual-energy CT for atomic number identification in a material** Can we apply the method to medium *Z* elements?

- •The dual-energy analysis cannot be used below K-edge energy of a atom
- •When maximum X-ray energies are 21.9 keV and 43.8 keV, elements up to Z = 38 should be identified
- •Energy spread  $\Delta E/E$  of the monochromatic X-ray

SR light : $10^{-1} - 10^{-2}$  % (negligible), Compact X-ray source : 1 to 10%

### Numerical simulation to examine applicability



#### Effective atomic number simulated by considering the X-ray energy profile



#### CT simulation for low to medium Z elements



Atomic number identification for material inside iron can (EGS4 test geometry) (\*\*\*\* Radiography \*\*\*\*)





# Application plans of the compact hard X-ray source

Atomic number identification by dual-energy X-ray CT

#### Nondestructive test

radio active

polyethylene metal drum

Element analysis inside a package

**Radiation Treatment Planning** 



Dose calculation by considering elements in a tumor for advanced radiation therapy

#### Neutron radiography with X-ray CT

Imaging of water in a plant [3,4]





Movement of a element in a living plant

#### Micro vessel angiography

Image of coronary [5]

Diameter of micro vessel is less than 100µm

Micro vessel angiography will be tested with spatial resolution of 100µm

#### Compact monochromatic hard X-ray source

#### Protein structural analysis

A R

Structure analysis in a small laboratory /

mm



## Applications of Hard X-ray and Nano Particles for Cancer Therapy and Diagnosis



X-ray application for cancer therapy and diagnosis with micelles

### Diagnosis

•X-ray imaging of tumors

•Contrast agent including lodine delivered and accumulated by micelles

### Therapy

•Enhanced radiation damage to cancer cells targeted and stimulated by micelles with specific agents

•X-ray irradiation to micelles for nuclei acid and protein delivery to cancer cells

### 4D(space and time) control of Chemo-radiology

M.Uesaka(Nuclear Engineering Research Laboratory, Univ.Tokyo) K.Nakagawa(Department of radiology, Univ.Tokyo Hospital)



## Structure of RF Gun



## System of RF Gun Aging



## Trouble Point Discharge @ RF Window (12MW) <u>Discharged Signatures</u>





• Discharge of multi-pactaring In addition, We could not see discharged signature at Gun side.

Worse vacuum at upstream

Amplified discharge

## **Discharged Signatures**



## Cathode



## New Beam Line



## Stored Energy & Reflection



## Return loss at the gun





### <u>Discharged signatures</u> remain like shape of 8.





(b1)

Transmission power of 4MW





(b2) Transmission power of 10MW





(b3)

(a3) Transmission power of 50MW





### Design of New Compact Stereotactic X-band Therapy Machine

### Stable and high-current commercial S-band machine, but large

Compact X-band(9.3GHz) machine, but unstable and low-current







This stability and high-currents This size

Schematic layout of compact accelerator

using multi-beam klystron (Type 1)



Schematic layout of compact accelerator using multi-beam klystron (Type 2)





University of Tokyo

#### Hard X-ray Sources by Thomson Scattering

| Univ.Tokyo<br>/NIRS             | ~10MeV<br>(Laser Plasma<br>Acc.) | >10pC<br>Single bunch     | 800nm, 300mJ<br>(Ti:Sapphire, 40fs) | 10-20keV<br>~2.0E+7photon/sec |
|---------------------------------|----------------------------------|---------------------------|-------------------------------------|-------------------------------|
| [3]<br>Univ.Tokyo/NIRS<br>/ KEK | 35MeV<br>(X-band)                | 20pCx10000<br>Multi bunch | 1µm, 2J<br>(Nd:YAG, 10ns)           | 33keV<br><1.0E+8 photon/sec   |
| [2]                             | 25MeV                            | 500pC                     | 1 µm, 20J                           | 12, 50keV                     |
| MXI Systems Inc                 | (S-band)                         | Single bunch              | (Nd:Glass)                          | <1.0E+8 photon/sec            |
| Sumitomo <sup>[1]</sup>         | 14 MeV                           | 400pC                     | 800nm, 300mJ                        | 3.5keV                        |
| Heavy Industry                  | (S-band)                         | Single bunch              | (Ti:Sapphire, 300ps)                | <1.0E+4 photon/shot           |
|                                 | Electron                         | Electron                  | Laser wave length                   | X-ray energy                  |
|                                 | energy                           | Charge                    | Laser Power                         | Photon number                 |

[1] :M.Yorozu et al. Jpn.J.Appl.Phys., Vol.40 (2001) pp. 4228-4232

[2] :F.E. Carroll et al. Am.J Rentgenol. 181 (2003) 1197

[3] :K.Dobashi et al. Jpn Appl.Phys., Vol.44 (2005) pp. 1999-2005

#### Therapy Accelerator

|                               | Average Current | Peak Current   | Repetition rate |
|-------------------------------|-----------------|----------------|-----------------|
| Present Medical<br>Linac Acc. | ~30mA           | ~500 mA (3µs)  | 300Hz           |
| Laser Plasma<br>Acc.          | ~100 pA         | ~200 A (~50fs) | 10Hz            |

## Waveform of Oscilloscope



## History of RF aging of RF-gun

