

An Inverse-Compton-Scattering Source via Self-Guiding in a Plasma

R. B. Yoder Manhattan College, New York J. B. Rosenzweig UCLA Dept. of Physics and Astronomy

ICFA Workshop on High-Brightness Beams, Erice, October 2005

• radiation opening angle $\sim 1/\gamma$

electron

(E>10 MeV)

• considered for short-pulse x-ray and gamma ray sources (synchrotron light sources are broadband, long-pulse)

Obstacle to high brightness: Spatial overlap problem

- Want high photon density, but tight focus gives **strong diffraction**
- Beam limited by emittance $\beta = \sigma_r^2 / \varepsilon \le 0.5 1 \text{ cm}$
- Laser limited by diffraction $Z_R = \pi r_0^2 / \lambda_0 \le 1 - 2 \text{ mm}$

Result: basic limitation on photons/pulse for Compton sources: must have beam lengths ≤ diffraction length;
large laser fields and beam space charge effects
R. Yoder, Erice 2005

Emittance, field are limiting factors

Particle beam has (approximately) $\varepsilon_n = \gamma \sigma_x \sigma_{x'} = \text{constant}$ Brightness comes at expense of divergence

Laser has wavelength-limited product of σ_r and θ Can't simply add more energy to short pulse without increasing $a_L = eE_L/mc\omega$ If $a_L \ge 1$, transverse relativistic motion becomes important and e-beam disruption is an issue Only solution is to increase interaction **volume**

Guiding Channel: beat the diffraction limit

• **Plasma channels**: region of plasma with low electron density, positive ion background

- Created by intense laser pulses or electron beams
- Laser guiding over many Rayleigh ranges has been demonstrated
- Matched electron beam can be transmitted over many β
- Full beam length available for interaction even for small spot size
- Can do this using a **pre-formed** channel

(BNL-ATF, current work using capillary discharge tubes)

- ... but potentially easier to exploit **self-guiding**:
- both laser and e-beam will self-guide under correct conditions
- no need for timing 2 laser pulses or spark devices

Beam Self-Guiding: PWFA in blowout

- Field of beam pushes plasma electrons away from axis
- Rarefaction forms behind beam
- Long beam needed: the head erodes as the channel forms
- Middle/tail of beam is focused and guided
- Very high axial fields created in rarefaction

R. Yoder, Erice 2005

Self-Guiding Results

Recent demonstrations include

• Argonne AWA: 70% of 14 MeV, 25 ps, 10 nC beam transmitted intact through 12 cm plasma (= 8β) forming 280 μ m channel

• SLAC FFTB: Beam tail propagation through 1.4 m plasma (overfocused). using 28 GeV, 2 ps, 3 nC beam — observed steering

- Blowout efficiency depends on the ratio n_b/n_p as long as beam is relativistic (must be > 1 for blowout; usually ~ 5 to 10)
- but density decrease still observed for $n_b/n_p < 1$
- Focusing strength of channel is fixed: this sets the depth of focus for the e-beam

$$\beta_{\rm eq} = \sqrt{\gamma / 2\pi r_e n_0}$$

- Match the beam to this gradient to avoid overfocusing - set $\sigma_r^2/\varepsilon = \beta$; then focus onto plasma boundary
- Assume $\sigma_z k_p >> 1$, so plasma matches beam
- Beam distribution near head expands radially; the head electrons are focused less due to finite plasma response time
- Beam body transverse size is near stationary

Laser Guiding:

- Need plasma refractive index to be lowered off-axis
- Decrease plasma density on-axis, *n* is modified:
- ("optical fiber")

$$n^2 = 1 - \frac{1}{\gamma} \left(\frac{\omega_p}{\omega}\right)^2$$

Self-guiding: if $a_0^2 >> 1$, high efficiency
requires P > 17.4 $(\lambda_p/\lambda_w)^2$ [GW]Pre-formed channel: careful plasma manipulation
or Electron beam blowout

Once channel forms, propagation is very efficient: e.g. guiding 10¹⁴ W/cm² over 25 to 70 Rayleigh lengths with pre-formed channel! (*Durfee et al., Maryland, 1995*)

Relativistic Laser Self-Guiding: not a likely prospect

- Guiding doesn't work well for $L \le \lambda_p$ (no plasma collective response)
- \Rightarrow Only long pulses can be considered
 - Self-modulation can occur due to wakefield formation
 - There is a wavelength-independent <u>critical density</u>: $n_{crit} = 1/(r_e \pi w_0^2) \ge 10^{19} \text{ cm}^{-3}$ for 10 µm laser (better focus for 800 nm)

Laser constraints (critical power)

• Choose long wavelength (10 μ m), achievable power levels (~20 TW?) \Rightarrow very dense plasma ($n_p = 10^{17}/\text{cm}^3$), $\lambda_p = 48 \ \mu$ m

• To beta-match into this requires $\sigma_r = 2.3 \mu m$ with low-emittance beam (4 mm mrad) at 80 MeV $\Rightarrow n_b \sim n_p$ even with this focusing

Thus: don't try to match laser at critical density, instead use beam to prepare channel for **both**, with $P_{laser} < P_{crit}$

- long electron beam (3–4 mm), high charge (~10-100 nC)
- laser pulse arrives when beam head exits plasma
- laser guiding over 5–10 Z_R through plasma-formed channel

Free parameters: plasma density n_0 e-beam emittance ε , population N_b , length σ_z

Beam guiding requirement fixes β and σ_r

$$\beta_{eq} = \sqrt{\gamma / 2\pi r_e n_0}$$

$$\sigma_r = \left(\varepsilon_n^2 / 2\pi \gamma r_e n_0\right)^{1/4}$$

Set laser σ_r to match the channel, focus

Laser guiding: 2D simulation 800 nm, 50 fs pulse

Pulse quality is still reasonable

Envelope function ($\sigma_z = 15 \ \mu m$, $\sigma_y = 9 \ \mu m$)

Spectral order; red = 0

$$t = 360 \text{ ps}$$

Projected Photon Flux

Approximately:

$$N_x = \sigma_T \, \frac{N_b N_\gamma}{A} f$$

A is transverse overlap area; *f* is ratio of lengths (≤ 1); $\sigma_T = 0.6$ barn

Assume 800 nm laser, 1 TW, 500 fs, 20 μ m spot: - N_{γ} ~ 10¹⁸, N_b = 6 x 10¹¹, entire laser pulse is usable energy, a_L < 0.1

 \Rightarrow photon yield roughly 10⁹– 10¹⁰ / pulse

With 10.6 μ m, N_y goes up, but $a_L \sim 0.5-1$

Very challenging simulation problem!

- resolve laser wavelength over ~ $10Z_R = 3000 \lambda$
- symmetry problem: e-beam cylindrical, laser Cartesian

An Application?

- Compton scattering has been proposed for high-flux γ-ray source for e+/e- collider (multiple laser beams)
- Requires only high-energy e-beam (~ 2 GeV)
- Plasma-assisted Compton source could greatly simplify this idea by extending useful pulse lengths
- Obtain small-angle, bright, polarized positron beam with only one laser?

γ-ray source

- 800 nm YAG laser, 10 ps, 1.5 J/pulse, 60 MeV scattered photons
- 100 nC e-beam, 1.6 GeV, 20 ps length, in 10¹⁷ plasma
- Matched beam, $\beta = 800 \ \mu m$, $\sigma_x = 2.3 \ \mu m$, $n_b/n_0 \sim 5$ (like SLC)
- Laser guided over 7 Z_R
- $\geq 10^{11}$ scattered photons/pulse, with $a_L \sim 0.1$ (low is good)
- Average brightness ~ 10^{22} photons/sec

Competitive with proposed polarized positron sources, with much simpler laser setup!

10.6 μ m laser has higher photon number, but

- need much higher n_p to guide, then beam is difficult
- much higher $a_L \sim 0.5 1 \implies$ nonlinear effects, distortion

• Self-guiding in plasma by electron beam has potential to create a high-brightness, long-pulse x-ray source through inverse Compton scattering

- conceptually simple
- easy to time
- high photon number output
- Output looks competitive with other x-ray and γ-ray generation methods involving pre-formed channels or multiple lasers
- Not necessary to use 10.6 μ m laser!
 - increase in photon number offset by high a_L
 - similar performance from 800nm systems
- Simulation of yield is tough ongoing project