Applications of High Brightness Beams: Energy Recovered Linacs

G. A. Krafft Jefferson Lab

Jefferson Lab

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

Schematic Representation of Accelerator Types

Advantage Linacs

Emittance dominated by source emittance and emittance growth down linac

Beam polarization "easily" produced at the source, switched, and preserved

Total transit time is quite short

Beam is easily extracted. Utilizing source control, flexible bunch patterns possible

Long undulaters are a natural addition

Bunch durations can be SMALL (10-100 fsec)

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

Comparison Linacs and Storage Rings

Advantage Storage Rings

Up to now, the stored average current is much larger

Very efficient use of accelerating voltage

Technology well developed and mature

. Disadvantage of Storage Rings

Technology well developed and mature (maybe!)

One cannot eliminate the synchrotron radiation and the emittance and bunch length it generates

Jefferson Pab

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

Beam Energy Recovery

Beam optics is easier though.

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

Power Multiplication Factor

• An advantage of energy recovered recirculation is nicely quantified by the notion of a power multiplication factor:

$$k = P_{b,ave} / P_{rf}$$

where P_{rf} is the RF power needed to accelerate the beam

- By the first law of thermodynamics (energy conservation!) k < 1in any linac not recirculated. Beam recirculation with beam deceleration somewhere is necessary to achieve k > 1
- If energy IS very efficiently recycled from the accelerating to the decelerating beam

Jefferson Pab

•

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

High Multiplication Factor Linacs

Use the words "High Multiplication Factor Linac" for those designs that feature high k.

Jefferson Cab

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

Comparison Accelerator Types

Parameter	High Energy Electron Linac	High <i>k</i> Recirculated Superconducting Linac	Ring
Accelerating Gradient[MV/m]	>50	10-20	NA
Duty Factor	<1%	1	1
Average Current[mA]	<1	10 going to 100	1000
Average Beam Power[MW]	0.5	1.0 going to 700	3000
Multiplication Factor	<1	33 going to 200	1000
Normalized Emittance[mm mrad]	1	1	4
Bunch Length	100 fsec	100 fsec	20 psec

Jefferson Lab

Typical results by accelerator type

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Major Challenge for High Current Recirculation

- . High average current sources to provide beam
- . Applications:
 - High average power free electron lasers
 - Recirculated linac light sources
 - Electron coolers
 - Collider ERL electron sources
- Right now, depending on the applications, looks like several ways to get there including DC photocathode sources and RF photocathode sources, either normal conducting or superconducting

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

The SCA/FEL Energy Recovery Experiment

- Same-cell energy recovery was first demonstrated in a superconducting linac at the SCA/FEL in July 1986
- Beam was injected at 5 MeV into a ~50 MeV linac (up to 95 MeV in 2 passes), 150 µA average current (12.5 pC per bunch at 11.8 MHz)
- The Recyclotron beam recirculation system could be not used to produce the peak current required for lasing and was replaced by a doubly achromatic single-turn recirculation line.
- Nearly all the energy was recovered. No FEL inside the recirculation loop.

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

JLab 10kW IR FEL and 1 kW UV FEL

Jefferson Lab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

JAERI ERL-FEL

2.5 230kV E-gun	MeV Injector] CA	17MeV Loop undulator 500MHz SC. (7.5MV x 2)	beam d	ump
			and the second		
	(1MVx2)		20m		
Output Light Parameters	(1MVx2) Achieved	Goal	20m Electron Beam Parameters	Achieved	Goal
Output Light Parameters Wavelength range (microns)	(1MVx2) Achieved 22	Goal 22	Electron Beam Parameters Energy (MeV)	Achieved 17	Goa 16.4
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec)	(1MVx2) Achieved 22 15	Goal 22 6	Electron Beam Parameters Energy (MeV) Accelerator frequency (MHz)	Achieved 17 500	Goal 16.4 500
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec)	(1MVx2) Achieved 22 15 10	Goal 22 6	Electron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)	Achieved 17 500 500	Goa 16.4 500 500
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec) Laser power / pulse (microJoules)	(1MVx2) Achieved 22 15 10	Goal 22 6 120	20mElectron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)Average current (mA)	Achieved 17 500 500 5	Goa 16.4 500 500 40
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec) Laser power / pulse (microJoules) Laser power (kW)	(1MVx2) Achieved 22 15 10 0.1	Goal 22 6 120 10	20mElectron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)Average current (mA)Peak Current (A)	Achieved 17 500 500 5 33	Goa 16.4 500 500 40 83
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec) Laser power / pulse (microJoules) Laser power (kW) Rep. Rate (MHz)	(1MVx2) Achieved 22 15 10 0.1 10.4	Goal 22 6 120 10 83.2	20mElectron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)Average current (mA)Peak Current (A)Beam Power (kW)	Achieved 17 500 500 5 33 85	Goa 16.4 500 500 40 83 656
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec) Laser power / pulse (microJoules) Laser power (kW) Rep. Rate (MHz)	(1MVx2) Achieved 22 15 10 0.1 10.4 10ms	Goal 22 6 120 10 83.2	20mElectron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)Average current (mA)Peak Current (A)Beam Power (kW)Energy Spread (%)	Achieved 17 500 500 33 85 ~0.5	Goa 16.4 500 500 40 83 656 ~0.5
Output Light Parameters Wavelength range (microns) Bunch Length (FWHM psec) Laser power / pulse (microJoules) Laser power (kW) Rep. Rate (MHz) Macropulse format	(1MVx2) Achieved 22 15 10 0.1 0.1 10.4 10ms 10Hz	Goal 22 6 120 10 83.2 CW	20mElectron Beam ParametersEnergy (MeV)Accelerator frequency (MHz)Charge per bunch (pC)Average current (mA)Peak Current (A)Beam Power (kW)Energy Spread (%)Normalized emittance (mm-mrad)	Achieved 17 500 500 5 33 85 ~0.5 ~40	Goa 16.4 500 500 40 83 656 ~0.5 ~40

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

BINP Recuperator FEL

Output Light Parameters	IR
Wavelength range (microns)	120-180
Bunch Length (FWHM psec)	50
Laser power / pulse (microJoules)	9
Laser power (kW)	0.2
Rep. Rate (cw operation, MHz)	22.5

Electron Beam Parameters	IR
Energy (MeV)	12
Accelerator frequency (MHz)	180
Charge per bunch (pC)	900
Average current (mA)	20
Peak Current (A)	10
Beam Power (kW)	240
Energy Spread (%)	0.2
Normalized emittance (mm-mrad)	20

Jefferson Pab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

BINP ERL-FEL

Thomas Jefferson National Accelerator Facility

DC photoinjectors

State-of-the-art: JLAB FEL gun

- High repetition rate up to 75 MHz $\epsilon_{N,rms} \sim$ 7-15 mm-mrad for $q \sim 60$ –135 pC/bunch (measured at the wiggler)
- Average current up to 9 mA
- Cathode voltage: 350 - 500 kV

Planned DC Photoinjectors

- JLab: 500 kV, 75 MHz, 10 mA
- JLab/AES: 750 MHz, 100 mA
- Daresbury ERLP: Duplicate of JLab FEL gun, 6.5 mA
- **Cornell**: 500 750 kV, 100 mA, 77pC/bunch, 1.3 GHz, $\epsilon_{N,rms} \sim 0.1 \text{ mm-mrad}$

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

RF photoinjectors

• To date RF guns have produced best normalized emittances: $\epsilon_{N,rms} \sim 1 \ \mu m$ at q $\sim 0.1 - 1 \ nC$, but at relatively low rep rate (10-100 Hz)

 Challenge: Balance high gradient (low emittance) with high rep rate (thermal effects)

State-of-the-art: Boeing gun

- Repetition rate 433 MHz at 25% DF
- Average current 32 mA

Planned RF Photoinjectors

LANL/AES: 700 MHz,100 mA

Jefferson Pab

Erice 2005 HBB Workshop

SRF photoinjectors

High CW RF fields possible Significant R&D required

Rossendorf proof of principle experiment:

1.3 GHz, 10 MeV 77 pC at 13 MHz and 1 nC at < 1 MHz

BNL/AES/JLAB development: 1.3 GHz _-cell Nb cavity at 2K Test diamond amplified cathode

AES/BNL development: 703.75 MHz _-cell Nb photoinjector

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

Hybrid Guns

LANL NC 1 _-cell + SRF cells

University of Peking

DC + SRF gun

Jefferson Pab

Thomas Jefferson National Accelerator Facility

315.5

Erice 2005 HBB Workshop

Planned ERL-FELs

- KAERI FEL
- 4GLS
- NHMFL
- ARC-EN-CIEL

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

KAERI FEL

Output Light Parameters	Goal
Wavelength range (microns)	3-20
Bunch Length (FWHM psec)	20-50
Laser power / pulse (mJoules)	50-250
Laser power (kW)	1-5
Rep. Rate (MHz)	22
Macropulse format	CW

Electron Beam Parameters	Goal
Energy (MeV)	20-40
Accelerator frequency (MHz)	352
Charge per bunch (pC)	500
Average current (mA)	10
Peak Current (A)	10-25
Beam Power (kW)	200-400

Jefferson Gab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

National High Magnetic Field Laboratory (NHMFL)

Proposal for a Concept and Engineering Design submitted to NSF in January 2005, with UCSB and JLab as partners. The goal is to produce a facility that can combine high magnetic fields (~50T) and intense electromagnetic radiation spanning the wavelength range of 2 mm to 2 _m.

Output Light Parameters	Goal
Wavelength range (microns)	2-100
Bunch Length (FWHM psec)	0.5-few
Laser power / pulse (mJoules)	~25
Laser power (kW)	~1
Rep. Rate (MHz)	37.5
Macropulse format	CW

Electron Beam Parameters	Goal
Energy (MeV)	60
Accelerator frequency (MHz)	1500
Charge per bunch (pC)	135
Average current (mA)	5
Peak Current (A)	200
Beam Power (kW)	300

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

ellerson

ARC-EN-CIEL - SACLAY

Thomas Jefferson National Accelerator Facility

TESLA XFEL ERL

Thomas Jefferson National Accelerator Facility

Why ERLs for X-rays?

Thomas Jefferson National Accelerator Facility

Brilliance Scaling and Optimization

For 8 keV photons, 25 m undulator, and 1 micron normalized emittance, X-ray source brilliance

$$B \propto \frac{I}{\varepsilon^2} = \frac{fQ}{\varepsilon_{th}^2 + AQ^p}$$

For any power law dependence on charge-per-bunch, Q, the optimum is

$$AQ^{p} \approx \varepsilon_{th}^{2} / (p-1)$$

- . BEST BRILLIANCE AT LOW CHARGES, once a given design and bunch length is chosen!
- . Unfortunately, best flux at high charge

Jefferson Lab

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

- ERL Source Sample Parameters – 🕌

Parameter	Value	Unit
Beam Energy	5-7	GeV
Average Current	100 / 10	mA
Fundamental frequency	1.3	GHz
Charge per bunch	77 / 8	рС
Injection Energy	10	MeV
Normalized emittance	<mark>2 / 0.2</mark> *	_m
Energy spread	0.02-0.3*	%
Bunch length in IDs	0.1-2*	ps
Total radiated power	400	kW

* rms values

Jefferson Pab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Sinclair Points

- Emittance compensation is effective in reducing the emittance from DC guns too. The computer designs of the Cornell ERL source require its application to achieve the best beam parameters.
- Thermal emittance matters, even at high charge. Starting with the best possible thermal emittance, as may be extracted from GaAs photocathodes (photoelectrons are thermalized before being emitted), may be preferred.
- You don't need infinite voltage or cathode gradient to get decent performance from a DC gun.
- First beam, optimistically, by the end of the year.

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

DC photoinjectors

State-of-the-art: JLAB FEL gun

- High repetition rate up to 75 MHz
- $\epsilon_{N,rms} \sim 7-15$ mm-mrad for q ~ 60 –135 pC/bunch (measured at the wiggler)
- Average current up to 9 mA
- Cathode voltage: 350 500 kV

Planned DC Photoinjectors

- JLab: 500 kV, 75 MHz, 10 mA
- 💑 JLab/AES: 750 MHz, 100 mA
- **Daresbury ERLP**: Duplicate of JLab FEL gun, 6.5 mA
- Cornell: 500 750 kV, 100 mA, 77pC/bunch, 1.3 GHz, $\epsilon_{N,rms} \sim 0.1 \text{ mm-mrad}$

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

Conceptual layout of 4GLS

Daresbury: ERL Prototype

Thomas Jefferson National Accelerator Facility

Daresbury: ERL Prototype

Electron Beam Parameters	Goal
Energy (MeV)	30-50
Accelerator frequency (MHz)	1300
Charge per bunch (pC)	>80
Average current (_A)	13
Peak Current (A)	53
Beam Power (kW)	0.455

Output Light Parameters	Goal
Wavelength range (microns)	3-10
Bunch length (FWHM psec)	1.5
Laser energy/ pulse (_ Joules)	9
Macropulse average laser power (kW)	0.7
Rep. Rate (MHz)	81.25
Macropulse length @20 Hz rep rate (_sec)	100

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

ERLs in High Energy and Nuclear Physics

• Electron cooling of hadron storage rings

The requirements:

- 1. Low-energy
- 2. High brightness
- 3. High-Charge
- 4. High-current

 Provide electron beams for highluminosity colliders.

The requirements:

- 1. High-energy
- 2. Polarization
- 3. High-current

Gefferson Lab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Electron Cooling

ERL-Based Electron Cooler

Thomas Jefferson National Accelerator Facility

BNL ERL R&D Facility

Superconducting RF gun under development

703.75 MHz gun. 2x0.5 MW input couplers. HOM damping thru beam tube. Various cathode schemes, including encapsulated cathode behind diamond window – isolation cathode _ gun.

CW performance 0.5 ampere @ 2 MeV.

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

Two Proposed Electron-Ion Colliders

ELIC

- Multi-turn circulation ring for electrons
 - Lower injector current
 - Need injection / ejection
 - Partial benefit for electron beam-beam
- Very high bunch frequency
- Novel ion ring complex of "figure 8" rings
- · Light ions only

eRHIC

- Single pass ERL
 - High e source current required
 - Simplified structure
 - Maximum benefit from beambeam in electron machine
- Bunch frequency of RHIC
- · Well known ion ring
- All ions

Jefferson Lab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

eRHIC

eRHIC Beam Parameters

RHIC	main case	option	6
Ring circumference [m]	3834		
Number of bunches	360		
Beam rep-rate [MHz]	28.15		
Protons: number of bunches	360	120	
Beam energy [GeV]	26 - 250		
Protons per bunch (max)	$2.0 \cdot 10^{11}$	$6 \cdot 10^{11}$	
Normalized 96% emittance [µm]	14.5		0
<i>β</i> *[m]	0.26		
RMS Bunch length [m]	0.2		2
Beam-beam tune shift in eRHIC	0.005		5
Synchrotron tune, Qs	0.0028 (see [2.4]))	\mathbf{D}
Gold ions: number of bunches	360	120	
Beam energy [GeV/u]	50 - 100		0
Ions per bunch (max)	$2.0 \cdot 10^{9}$	$6\cdot 10^9$	2
Normalized 96% emittance [µm]	6		H
<i>β</i> *[m]	0.25		00
RMS Bunch length [m]	0.2		1
Beam-beam tune shift	0.005		H
Synchrotron tune, Qs	0.0026		F
Electrons:			
Beam rep-rate [MHz]	28.15	9.38	5
Beam energy [GeV]	2 - 10		9
RMS normalized emittance [µm]	5-50 for $N_e = 10^{10}$	9/10 ¹¹ & per bunch	
β*	\sim 1m, to fit beam-size	ze of hadron beam	
RMS Bunch length [m]	0.01		
Electrons per bunch	$0.1 - 1.0 \cdot 10^{11}$		
Charge per bunch [nC]	1.6 - 16		
Average e-beam current [A]	0.045 - 0.45	0.015 - 0.15	

Jefferson Lab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

ELIC Design

Thomas Jefferson National Accelerator Facility

Circulator Ring

Thomas Jefferson National Accelerator Facility

ELIC Parameters at different CM energies

Parameter	Unit	Value	Value	Value
Beam energy	GeV	150/7	100/5	30/3
Cooling beam energy	MeV	75	50	15
Bunch collision rate	GHz	1.5		
Number of particles/bunch	10^{10}	.4/1.0	.4/1.1	.12/1.7
Beam current	Α	1/2.4	1/2.7	.3/4.1
Cooling beam current	Α	2	2	.6
Energy spread, rms	10 ⁴	3		
Bunch length, rms	mm	5		
Beta-star	mm	5		
Horizontal emittance, norm	? m	1/100	.7/70	.2/43
Vertical emittance, norm	? m	.04/4	.06/6	.2/43
Number of interaction points		4		
Beam-beam tune shift (vertical) per IP		.01/.086	.01/.073	.01/.007
Space charge tune shift in p -beam		.015	.03	.06
Luminosity per IP [*] , 10 ³⁴	$cm^{-2} s^{-1}$	7.7	5.6	.8
Core & luminosity IBS lifetime	h	24	24	? 24
Lifetime due to background scattering	h	200	? 200	? 200

Jefferson Lab

Erice 2005 HBB Workshop

Thomas Jefferson National Accelerator Facility

Luminosity Evolution of ELIC

	TT. 1	X 7.1	X7.1	X 7.1	
Parameter	Unit	value	Value	value	
Beam energy	GeV	150/7			
Cooling beam energy	MeV	75			
Bunch collision rate	GHz	.15	.5	1.5	
Number of particles/bunch	10 ¹⁰	.4/1.0			
Beam current	Α	.1/.24	.3/.8	1/2.4	
Cooling beam current	A	.2	.6	2	
Energy spread, rms	10 ⁴	3			
Bunch length, rms	mm	25/5	10/5	5/5	
Beta-star	mm	25	10	5	
Horizontal emittance, norm	? m	1/100			
Vertical emittance, norm	? m	.04/4			
Number of interaction points		4			
Beam-beam tune shift (vertical) per IP		. <mark>01</mark> /.086	.01/.086	.01/.086	
Space charge tune shift in p -beam		.003	.007	.015	
Luminosity per IP [*] , 10 ³⁴	$cm^{-2}s^{-1}$.15	1.2	7.7	

Jefferson Lab

Erice 2005 HBB Workshop

11 October 2005

Thomas Jefferson National Accelerator Facility

Summary

- ERLs provide a powerful and elegant paradigm for high average power free electron lasers.
- The pioneering ERL FELs have established the fundamental principles of ERLs.
- The multitude of ERL projects and proposals worldwide promises an exciting next decade as:
 - . Three currently operating ERL-FELs will reach higher performance
 - . At least five more ERLs are in serious planning stages and will likely be constructed
 - New advanced concepts are being explored; most of the applications need high average brightness beams

Jefferson Pab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

Many thanks to

Sources

- . Ivan Bazarov
- . Lia Merminga
- . Todd Smith
- . Ilan Ben-Zvi
- . Susan Smith

for providing information/slides for this talk

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Erice 2005 HBB Workshop

11 October 2005

How to avoid beam quality degradation due to beambeam interactions of the counter-propagating beams?

Thomas Jefferson National Accelerator Facility

At a 1 MHz rep rate there are 6 bunches in the ERL at a given time, thus 12 collision locations separated by 150 meters.

The proposed solution is to avoid collisions altogether!

Three suggested beam time structures:
Nominal beam: 1 μpulse every μs
Short trains of bunches: The bypass chicanes are about 4.5 m in length.
Bunch trains of this length (~20 RF cycles, 15 ns) can repeat every μs without colliding.
Long trains: The return arc plus the

straight section for undulators is about 2000 m long. A 6.7 μ s train of bunches can repeat every 24 μ s without colliding.

Erice 2005 HBB Workshop

