

Multipacting at the photocathode in the rf gun cavity

J. Han DESY, PITZ Erice, Italy, October 2005

- Experimental observation
- Secondary emission model and test with beam dynamics
- Simulation of the electron multiplication process
- Summary

Measurement setup

Jang-Hui Han (DESY)

Erice, Italy, October 2005

 $\mathbf{P} \mathbf{I} \mathbf{T} \mathbf{7}$

Dark current measured with the Faraday cup 0.78 m from the cathode

Jang-Hui Han (DESY)

Erice, Italy, October 2005

Description of multipacting

RF field when the multipacting starts

$$E_{\rm MP} = E_{\rm max} \exp(-t_{\rm delay}/t)$$

 $E_{\rm MP}$: the RF field when the multipacting occurs

- E_{\max} : the maximum field of the RF pulse
- *t*_{delay} : the delay between the end of the rf pulse and the beginning of the rear multipacting peak
- *t* : the fill/decay time of the rf field in the cavity

Jang-Hui Han (DESY)

Dark current and multipacting peaks PITZ

Jang-Hui Han (DESY)

Erice, Italy, October 2005

Measurement of the delay time

Jang-Hui Han (DESY)

Erice, Italy, October 2005

PIT7

emissive material

 (Cs_2Te)

cathode plug

Numerical model of SE

SE in the RF gun

Jang-Hui Han (DESY)

Erice, Italy, October 2005

Р

Τ7

An example of electron trajectories

Jang-Hui Han (DESY)

Erice, Italy, October 2005

Р

Multiplication Process (I) ΤZ ΡΙ **Photo Injector Test Facility Zeuthen** 130 $d_{\text{max}} = 20, E_{\text{max}} = 1 \text{ keV}, s = 2.2$ 14 110 12 90 10 phase (degree) multiplication

8

6

4

2

0

8

rf field and field emission (a.u.)

0.5

-0.5

-1

-1.5^L 0

90

Most of dark current is emitted around 90 ° 1.5 ---rf field $-\beta_{\text{field}} = 100$

180

rf phase (deg)

max rf field (MV/m) Electron multiplication as a function of the max rf field and the emission phase. Electron trajectories and secondary generation have been tracked for 100 rf cycles (~77 ns).

1

5

6

7

70

50

30

10

2

3

Erice, Italy, October 2005

360

270

 $-\beta_{\text{field}} = 200$ $-\beta_{\text{field}} = 400$

Multiplication after 140 rf cycles vs. the maximum field at the cathode for different main and bucking solenoid current

Multiplication under the rf field decaying with a decay time of 2.78 μ s starting from 0.6 MV/m of the maximum field strength. An exponential increase of the number of electrons is shown.

Summary (I)

- Multipacting takes place at the Cs₂Te photocathode at a low rf gradient (~1MV/m) with a strong influence of the solenoid field configuration.
- Due to the high SEY of the photocathode (Cs₂Te), the multipacting cannot be pressed out.
- The position and the field configuration of the solenoids has to be determined in order to prohibit the multipacting as well as to keep the emittance small.

Jang-Hui Han (DESY)

Erice, Italy, October 2005