Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

R. Joel England

J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O'Shea UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory Los Angeles, CA USA

> D. Alesini INFN Laboratori Nazionali di Frascati Rome, Italy

Workshop on the Physics and Applications of High Brightness Electron Beams Erice, Sicily Oct 9-14, 2005

The Plasma Wakefield Accelerator (PWFA)

Bingham, R. Nature, 394, 617 (1998).

Wake Fields in Blowout Regime

Rosenzweig, et al. PRA, 44, R6189 (1991)

Overdense Plasma $n_b < n_p$; $k_p \sigma_z > 1$ current neutralized $n_b < n_p$; $k_p \sigma_r << 1$ self-focused

UnderdensePlasma $n_b/n_p > \gamma^2$ unfocus $\gamma^2 > n_b/n_p > 1$ ion focus

se Plasma unfocused ion focused (blowout)

Blowout Regime Mechanism:

- Plasma electrons disturbed by drive beam.
- Longitudinal space-charge wave generated.
- Ion channel created, pulls electrons back.
- Ion focusing is linear in r.
- Accelerating electric field, $E_{acc} \approx n_0^{1/2}$ [V/cm]

Overview of Drive Beam Issues for Blowout Regime of PWFA

The UCLA Neptune Laboratory

Beam Charge:	100-300 pC
Beam energy:	up to 15 MeV
Emittance:	ϵ_{N} = 6 mm mrad
Power Source:	18 MW Klystron
RF Frequency:	2.856 GHz
Cathode laser:	60-80 μJ at λ = 266 nm
Laser pulse length:	5 ps RMS

1.6-Cell Photoinjector

7&2/2 Cell PWT Linac

Neptune Dogleg Compressor S-Bahn Compressor

Neptune Dogleg Compressor PARMELA Simulation Results: 1000 particles, 300pC

Neptune Dogleg Compressor ELEGANT: Simulated Witness Beam

For PWFA application, drive beam needs a witness beam to accelerate.

Temporal Bunch Shaping: Diagnostic Deflecting Mode Cavity

Lowest dipole mode is TM₁₁₀ Zero electric field on-axis (in pillbox approx.) Deflection is purely magnetic Polarization selection requires asymmetry

 $x' = \frac{\pi f_{RF} L_B \sqrt{2P_{RF} R_{\perp}}}{cE/a}$

 $x_{B} = \frac{\pi f_{RF} L L_{B} \sqrt{2P_{RF} R_{\perp}}}{cE/e}$

J.D. Fuerst, et. al., DESY Report CDR98, 1998

Pillbox Fields

on axis $\kappa r = 0$

$$E_z = 0;$$

$$B_x = \frac{B_0}{2};$$

$$B_y = i\frac{B_0}{2};$$

Deflecting Cavity: Power & Resolution

screen deflection:
$$\sigma_{x,f} = \sqrt{\sigma_{x,0}^2 + \sigma_{def}^2}$$
 $\sigma_{def} = 2\sigma_z L \frac{\pi V_{\perp} f}{cU/e}$

$$V_{\perp} >> V_{\min} = \frac{\sigma_{x,0}U/e}{L\pi\sigma_t f}$$
 $\sigma_{t,\min} = \frac{\sigma_{x,0}U/e}{L\pi V_{\perp} f}$

$$V_{\perp,design} = 3V_{\min} = 545kV \qquad \sigma_{t,\min} = 545f.$$

 $\sigma_{x,f}$ = beam size at screen with deflector on; $\sigma_{x,0} = 0.3mm$ = beam size at screen with deflector off; L = 43cm = drift from deflector to screen; f = 9.6GHz = RF frequency; V_{\perp} = deflecting voltage; $R_{\perp} = 820k\Omega$ = transverse shunt impedance per cell; P_{in} = input RF power; U = 12MeV = electron beam energy; φ_0 = deflector injection phase = 0; $\sigma_{t,min}$ = minimum resolvable rms bunch length; $\Delta x = 30 \, \mu m$ = spatial resolution of screen & optics;

 Δt = effective temporal resolution of deflector;

9 cells; 50 kW; 50 fs resolution

ELEGANT Simulations

ELEGANT Simulation Results

- Using RFDF element with 9 cells
- 10,000 macroparticles
- Shunt Impedance: $R_T = 6.12 M\Omega$

• Power: $\mathbf{P} = \mathbf{V}_0^2 / \mathbf{R}_T$

0.5

10

20 30 4 distance from triplet (cm)

40 50

Deflecting Cavity: HFSS Design

Deflecting Cavity: Polarization Separation

Rods

+1358 MHz

Holes

-7 MHz

-2 MHz

- •Rods give greater better mode separation but shift the desired mode too much
- •Holes give less mode separation (5 MHz) but only perturb desired mode by 2 MHz (within range of temperature tuning).
- •Holes look like better option: 5 MHz is large compared to the resonance width

+53 MHz

Prototype Cavity

Constraints on Brightness & Emittance

blowout regime

transformer ratio

betatron matching

2cQ

 $\varepsilon_{N\max}^2 \sigma_z$

$$n_0 > \frac{mc^2}{\pi e^2 L} \qquad \sigma_r < \sigma_{\max} = \sqrt{\frac{Q/e}{4\pi n_0 \sigma_z}} \qquad \varepsilon_N < \varepsilon_{N\max} = \gamma \beta \frac{\sigma_{\max}^2}{\beta_{eq}} \qquad \mathcal{B} > \mathcal{B}_{\overline{min}} \frac{2L}{\varepsilon_N^2}$$

Permanent Magnet Quad Focusing

$$m_0 > \frac{mc^2}{\pi e^2 L}$$
 $\sigma_r < \sigma_{\max} = \sqrt{\frac{Q/e}{4\pi n_0 \sigma_z}}$ $\varepsilon_N < \varepsilon_{N\max} = \gamma \beta \frac{\sigma_{\max}^2}{\beta_{eq}}$ $\mathcal{B} > \mathcal{B}_{min} = \frac{2cQ}{\varepsilon_{N\max}^2 \sigma_z}$

Q=4 nC ; L=4mm; $\sigma_z = 1$ mm

scaling applied to laser at cathode: $\sigma_x, \sigma_y, \sigma_t \propto Q^{1/3}$ $(Q: 300 \, pC \rightarrow 4nC)$

Q = 4 nC; pt-to-pt space charge

UCLA-Parmela 2.0, 1000 particles

simulation of gun and linac w/solenoid for emittance compensation

scaling applied to laser at cathode: $\sigma_x, \sigma_y, \sigma_t \propto Q^{1/3}$ $(Q: 300 \, pC \rightarrow 4nC)$

scaling applied to laser at cathode: $\sigma_x, \sigma_y, \sigma_t \propto Q^{1/3}$ $(Q: 300 \, pC \rightarrow 4nC)$

20

15

10

7.5

2.5

200

300

17.5

12.5

ELEGANT, 1000 particles

longitudinal ph. space and profile at end

 $\varepsilon_{N_r} = 96 mm mrad$ $\varepsilon_{N_{v}} = 141 \ mm \ mrad$

simulation of sbahn and final focus horizontal dispersion killed to second order 2nd order longitudinal dispersion not killed

tail is 2nd and 3rd order

Conclusions

- PWFA drive issues: ramped profile, strong focus, high charge
- Ramped profile:
 - improved transformer ratio (R > 2)
 - feasible using dogleg compression with sextupoles
 - deflecting cavity diagnostic (50 fs resolution)
- Strong focus:
 - traditional EM quads + permanent magnet quadrupoles
 - adequate emittance and brightness (~ 100 μ m, 450 mA/ μ m² (*a*) 300 pC)
- High Charge:
 - scaling to high charge (~4 nC) at Neptune has some dilemmas
 - tradeoff between optimal profile and good emittance
 - extra sextupoles and octupoles may be required
 - beam sizes become bigger than the beam pipes
 - implies complete or partial redesign of the compressor