

ICFA Workshop: The Physics and Applications of High Brightness Electron Beams Erice, Italy, 9-14 October, 2005

Measurements of Transverse Emittance at the VUV-FEL at DESY

Katja Honkavaara (DESY / Univ. Hamburg) for the VUV-FEL team

• VUV-FEL

- Measurements of projected emittance
- First measurements of slice emittance

- SASE FEL user facility at DESY Hamburg in the wavelength range from vacuum ultraviolet to soft x-rays
- Commissioned in 2004 and beginning of 2005
- First lasing in January 2005 at 32 nm
- First user experiments started in June 2005
- A test bench for European XFEL and ILC

VUV-FEL Parameters

- Superconducting linac based on TESLA technology
- Energy up to 1 GeV
 - Present stage possible up to ~ 730 MeV
 - Presently operated at 445 MeV (lasing at 32 nm)
- Up to 7200 bunches per bunch train with 110 ns spacing; repetition rate up to 10 Hz
 - Presently: 1-30 bunches with 1 ms spacing (1 MHz), rep. rate 2 or 5 Hz
- Design electron beam parameters
 - Charge 1 nC / bunch
 - Normalized emittance 2 mm mrad
 - Peak current 2.5 kA
 - Energy spread 0.1%

•

•

٠

VUV-FEL Injector

/IIV_EEI

Vacuum-Ultraviolet Free-Electron Laser

Emittance measurements

VUV-FF

/acuum-Ultraviolet Free-Electron Laser

- Four (multi) monitor method
 - Beam size measured at several locations with fixed beam optics
- Quadrupole scan
 - Beam size measured at one location with different settings of one or several quadrupoles upstreams
 - Rarely used at the VUV-FEL (time consuming)

OTR monitors

- Use of optical transition radiation (OTR)
- OTR system designed and constructed by INFN-LNF and INFN-Roma2 in collaboration with DESY
- Based on digital cameras
- Remote controlled, 3 different magnifications
- Resolution down to ~ 10 um (rms)

Wire scanners

- 8 wire scanners along the linac
 - modified CERN type
 - Mounted into a common vacuum chamber with an OTR screen
 - 45 dg movement with respect to the beam
- 7 wire scanner stations along the undulator
 - Design and construction by DESY (Zeuthen + Hasylab)
 - Separate horizontal and vertical
 - scanners

Comparison of beam profiles measured by OTR monitors and wire scanners in the injector FODO lattice

Emittance measurements at injector

OTR screen + Wire scanner

VIV_EE

Vacuum-Ultraviolet Free-Electron Laser

- FODO lattice of 6 quadrupoles with periodic beta function; 45 deg phase advance (design optics)
- Transverse beam distribution (shape and size) measured at four OTR monitors or wire scanners with fixed beam optics; presently only OTR monitors in routine use
- Emittance and Twiss parameters at the location of the first screen determined from beam distribution and known transport matrices by two methods:
 - Least square fitting of the emittance and Twiss parameters to the measured beam size
 - Tomographic reconstruction of the phase space

Data analysis (F.Löhl)

Image analysis

Sophisticated analysis procedure applied to beam images

- Subtraction of background
- Determination of region of interest
- Off-set corrections, filtering
- Determination of beam core containing 90% (an arbitrary choice) of the beam intensity
- Calculation of rms beam sizes

Emittance calculations

rms emittance of the entire beam and the core rms emittance containing 90% of the beam intensity are determined using two methods:

- Least square fitting
- Tomographic reconstruction of phase space

Error estimation

- Error estimation performed for the fitting method
- Statistical errors due to fluctuations of measured beam sizes: typically 2-4%
- Systematical errors taking into account errors in beam energy, quadupole gradients and calibration of OTR monitors estimated by Monte Carlo simulations: typically 5-6%
- Errors in following statistical errors only

Presentation of results

Example of 100% emittance (rms)

Example of 90% emittance (rms)

Emittance vs. solenoid current

1 nC, 125 MeV

Beam through bunch compressor without compression (on-crest acceleration) Injector with nominal parameters, but not tuned for minimum emittance

Reproducibility

Emittance measured 10 times during 75 minutes keeping same machine conditions

Example of matching

- 1. Emittance and Twiss Parameters are measured
- 2. Based on this measurement, new currents in matching section quadrupoles are calculated to provide a better matching
- 3. Emittance and Twiss parameters are remeasured and matching repeated, if necessary

Katja Honkavaara, ICFA Workshop, WG2, Oct 9-14, 2005, Erice

Dependence of error on matching

Relative error in normalized emittance as a function of Twiss parameters:

VUV-FFI

Vacuum-Ultraviolet Free-Electron Laser

- for +5% and -5% error in the beam energy
- for 5% error in the beam sizes
- Design values (matched optics in the FODO lattice) are indicated

Beam size error 5%

Disk loaded S-band wave guide structure mounted to VUV-FEL by collaboration between DESY and SLAC.

Time varying field deflects the electron beam transversally _ temporal distribution of the electron bunch is transformed into a spatial distribution

"Streaked" beam image is measured on an OTR monitor downstreams. Vertical direction of the image represents the temporal distribution of the bunch.

Examples of LOLA images

LOLA images (preliminary) taken with a different phase of the first accelerating module different compression by the bunch compressor

- Electron beam streaked by the LOLA cavity and beam image measured at OTR monitor _ vertical direction represents the temporal distribution
- Streak strength of such that the entire beam image is on the OTR screen (not maximum streak _ time resolution limited)
- Quadrupole scan used to determine the emittance
- Off-crest acceleration in the first accelerating module (6.5 deg) _ compressed bunch
- Other accelerating modules with on-crest acceleration

Longitudinal charge distribution

- Beam energy 445 MeV
- Bunch charge 1 nC

Preliminary data analysis (M.Röhrs)

- Beam image divided into horizontal slices with width of 250 um (154 fs)
- Quadrupole scan to determine horizontal emittance and twiss parameters of the entire bunch and a single slice (least square fitting method)
- Scanning quadrupole ~ 40 m upstream of the screen; between an accelerator module and 6 quadrupoles

Quadrupole current [A]

VIIV_FFI

/acuum-Ultraviolet ⁻ree-Electron Laser

Preliminary results

- Measurements of projected emittance at the VUV-FEL
 - routinely at the injector using four-monitor method with OTR monitors; wire scanners available soon
 - before undulator using multi-monitor method with OTR monitors
 - measurements conditions not yet optimized
 - in the undulator using multi-monitor method with wire scanners
 - along the linac at several locations using quadrupole scan
 - time consuming, rarely used
- First measurements and preliminary data-analysis of sliceemittance using transverse deflecting cavity and quadrupole scan done. Next steps:
 - measurements with an uncompressed bunch
 - better optimized beam optics
 - quadrupole scan using two or more quads (tomography)
 - improvements of data-analysis