

Nuclear Engineering Research Laboratory Graduate School of Engineering University of Tokyo

Mono-energetic Electron Generation and Plasma Diagnosis Experiments in a Laser Plasma Cathode

K. Kinoshita, T. Hosokai, A. Zhidkov¹, T. Ohkubo, A. Maekawa, K. Kobayashi and M. Uesaka

Nuclear Professional School, School of Engineering, University of Tokyo

¹.National Institute of Radiological Sciences JAPAN

A. Yamazaki², H. Kotaki², M. Kando², K. Nakajima² and S. V. Bulanov²

²·Advanced Photon Research Center, Japan Atomic Energy Research Institute Kansai

The physics and Applications of High Brightness Electron Beams, Erice (Italy), 10th-14th Oct. 2005.

University of TOKYO Nuclear Professional School Laser Acceleration Group

Supervisor Prof.	Mitsuru UESAKA
Staff (Experiment)	Tomonao HOSOKAI
Staff (Experiment)	Kenichi KINOSHITA (Co
Staff (Simulation)	Alexei ZHIDKOV
D3-student (Simulation)	Takeru OHKUBO
D3-student (Experiment)	Atsushi YAMAZAKI (Kyoto Univ)
M1-student (Experiment)	Akira MAEKAWA
M1-student (Experiment)	Kazuyuki KOBAYASHI

17TW-37fs Ti:Sappire Laser facility

(Collaborators)

JAERI-APRC **Masaki KANDO** JAERI-APRC **Hideyuki KOTAKI** JAERI-APRC **Sergei V. BULANOV** JAERI-APRC **Kazuhisa NAKAJIMA**

High quality femtosecond electron beam

- 10 fs pulse duration
- 1 nC charge
- ΔE/E ~ 1 %
- Jitter free

Femtosecond pump-probe analysis

Fast processes in radiation chemistry

Electronic behavior in THz devices

Femtosecond X-ray generation through laser Compton scattering

 $E \sim 1 - 10$ keV, (~ 10^9 photon/s, within 1 deg)

2-staged Acceleration

(Tajima and Dawson Phys. Rev. Lett. 43, 267, (1979))

Femtosecond Electron Injector by Plasma Wave Breaking

Wave-breaking field
E_B~[2(ω/ω_{pl}-1)]^{1/2} mcω_{pl}/e
Density gradient
λ_{pl} N/(dN/dx)~1

ω:Laser frequency $ω_{pl}$: plasma frequency $λ_{pl}=2πc/ω_{pl}$ $λ_{pl}$: plasma wavelength

Reference : S.V.Bulanov, et al, Phys.Rev.E. 58, R5257

Experimental Setup at Univ. of Tokyo

Laser Parameters (Ti:Sapphire 17TW, 37fs)

Experimental Setup (Gas, Focusing, Beam Generation)

Summary of Prepulse effects -1

Reference: T.Hosokai, et al., Phys Rev.E 67,036407 (2003)

Summary of Prepulse effects -2

Channel Formation Inside Pre-plasma Cavity

Shadowgraph Images

* Polarization: parallel to the axis of probe pulse.

A Narrow Channel Formation Inside Pre-plasma Cavity

Interferogram

* Polarization: parallel to the axis of probe pulse.

Shadowgraph Images overlapped with Thomson Scattering.

* Polarization: perpendicular to the axis of probe pulse.

Optical guiding channel formation process

Density structure inside cavity

PIC Simulation

Over focus in a density channel & Rapid injection by wave breaking

Energy Spectra, (Experiment and PIC Simulation)

Further acceleration by capillary discharges, Optical guiding by Fast Z-pinch discharges

Gate CCD Images of Ti:sapphire Lase pulse

2-staged acceleration using a gas-jet injector with capillary discharges is one of the most promising approach to produce high quality electron bunch with tens MeV, tens fs, and quasi-mono energetic distribution.

Injector -- Laser plasma cathode

- Cavity formaton & Density steepening
 - Expanding shock by ns pre-pulse
- Narrow channel Formation inside the cavity
 - Focusing of ps-pulse due to density effects inside the wall ?
- Optical guiding through pre-channel inside the cavity

Quasi-mono energetic electrons by LWFA

Next Step

Further acceleration using capillary discharges.

Approach to quasi mono-energitic femtosecond electron bunch

Staged Acceleration

• A plasma channel can serve as a media for perfect wake-field for further acceleration generated via wave-breaking

Selfinjection

<u>A. Zhidkov, et.al</u> Phys. Rev. E **69**, 035401(R) (2004)