WAKE FIELDS EFFECTS IN A HIGH BRIGHTNESS PHOTO-INJECTOR

M. Ferrario, V. Fusco, M. Migliorati

Outline
-The Homdyn code: model and improvements
-Applications to the SPARC project:

- emittance preservation for misaligned structures
- emittance degradation and energy spread in the emittance meter experiment

$$
B_{\perp}=\frac{2 I}{\varepsilon_{x} \varepsilon_{y}}
$$

High current

Low emittance

Emittance degradation due to

e.m.: RF fields, space charge, WAKE FIELDS

WAKE FIELDS have been inserted in the HOMDYN code

-BEAM DYNAMICS MODELING IN HOMDYN

On Axis

RF Field

Off Axis

On axis \longrightarrow Envelope equations

Space charge

$$
\ddot{y}+\beta \gamma^{2} \dot{\beta} y+\left(k^{r f}+k^{s o l}\right)^{2} y=\frac{e}{\gamma^{3} m} E_{x}^{s c}\left(\xi_{s}, A_{x s}, y\right)+\left(\frac{4 \varepsilon_{n}^{t h}}{\gamma}\right)^{2} \frac{1}{y^{3}}
$$

Off axis \longrightarrow Centroid equations

$$
\begin{aligned}
& \text { Wakę field Solenoid Field } \\
& \left.\ddot{x}_{c}+\beta \gamma^{2} \dot{\beta} \dot{x}_{c}+k^{b f} x_{c}=\frac{e}{\gamma^{3} m} E_{x}^{s c}\left(\xi_{s}, A_{x s}, d_{x c}\right)+\frac{e}{\gamma m} E_{\perp}{ }^{w}\left(x_{c}{ }^{1}, \xi_{s}\right)+B_{z}+\frac{1}{2} \dot{z}\left(y B_{z}^{\prime}-\sum_{i} y_{i, o f f} B_{z, i}\right)\right\} \\
& \ddot{y}_{c}+\beta \gamma^{2} \dot{\beta} \dot{y}_{c}+k^{r f} y_{c}=\frac{e}{\gamma^{3} m} E_{y}^{s c}\left(\xi_{s}, A_{y s}, d_{y c}\right)+\frac{e}{\gamma m} E_{+}{ }^{w}\left(y_{c}{ }^{1}, \xi_{s}\right)-B_{z}-\frac{1}{2} \dot{z}\left(x B_{z}^{\prime}-\sum_{i} x_{i, o f f} B_{z, i}\right) \\
& \ddot{z}_{c}=\frac{e}{\gamma^{3} m} E_{z}^{s c}\left(\xi_{s}, A_{s}\right)+\frac{e}{\gamma m}\left\{E_{z}{ }^{r f}(z)+E_{\|}^{w}\left(\xi_{s}\right)-\frac{1}{2}\left[\dot{x}\left(y B_{z}^{\prime}-\sum_{i} y_{i, o f f} B_{z, i}^{\prime}\right)-\dot{y}\left(x B_{z}^{\prime}-\sum_{i} x_{i, o f f} B_{z, i}^{\prime}\right)\right\}\right\}
\end{aligned}
$$

Wake fields diffraction model:

hp: L<< a
_>>c/a
pill-box cavity

Green function

By a convolution of the Green function with the uniform distribution

$$
W_{\|}(s)= \begin{cases}0 & s<0 \\ \frac{2}{\sqrt{2}} \frac{Z_{0} c}{\pi^{2} a L} \sqrt{g s} & 0<s<L \\ \frac{2}{\sqrt{2}} \frac{Z_{0} c}{\pi^{2} a L} \sqrt{g}(\sqrt{s}-\sqrt{s-L}) & s>L\end{cases}
$$

Longitudinal wake field

$$
W_{\perp}(s)= \begin{cases}0 & s<0 \\ \frac{2^{5 / 2}}{3} \frac{Z_{0} c}{\pi^{2} a^{3} L} \sqrt{g} s^{3 / 2} & 0<s<L \\ \frac{2^{5 / 2}}{3} \frac{Z_{0} c}{\pi^{2} a^{3} L} \sqrt{g}\left(s^{3 / 2}-(s-L)^{3 / 2}\right) & s>L\end{cases}
$$

Periodic structure

$$
W_{\|}(s)= \begin{cases}0 & s<0 \\ \frac{2 Z_{0} c s_{1}}{\pi a^{2} L}\left[1-e^{-\sqrt{s / s_{1}}}\left(1+\sqrt{\frac{s}{s_{1}}}\right)\right] & 0<s<L \\ \frac{2 Z_{0} c s_{1}}{\pi a^{2} L}\left[e^{-\sqrt{\frac{s-L}{s_{1}}}}\left(1+\sqrt{\frac{s-L}{s_{1}}}\right)-e^{\sqrt{\frac{s}{s_{1}}}}\left(1+\sqrt{\frac{s}{s_{1}}}\right)\right] & s>L\end{cases}
$$

Longitudinal wake field

$$
W_{\perp}(s)= \begin{cases}0 & s<0 \\ \frac{4 Z_{0} c s^{2}}{\pi a}\left[-6+\frac{s}{s_{2}}+2 e^{-\sqrt{\frac{s}{s_{2}}}}\left(3+3 \sqrt{\frac{s}{s_{2}}}+\frac{s}{s_{2}}\right)\right] & 0<s< \\ \frac{4 Z_{0} c s^{2} 2^{2}}{\pi a^{2} L}\left\{\frac{L}{s_{2}}+2\left[e^{-\sqrt{\frac{s}{s_{2}}}}\left(3+3 \sqrt{\frac{s}{s_{2}}}+\frac{s}{s_{2}}\right)+\right.\right. & \\ \left.\left.+e^{-\sqrt{\frac{s-L}{s_{2}}}}\left(-3-3 \sqrt{\frac{s-L}{s_{2}}}-\frac{s-L}{s_{2}}\right)\right]\right\} & s>L\end{cases}
$$

Transverse

 wake fieldAsymptotic wake fields obtained numerically and fitted to a simple function K. Bane

The single slices generate wake fields:

Single slice

$$
\begin{aligned}
& E_{\perp}^{W}\left(x_{c s}, \xi_{s}\right)=\sum_{s=i}^{N} q_{s} x_{c s} W_{\perp}\left(\xi_{s}\right) \\
& E_{\perp}^{W}\left(y_{c s}, \xi_{s}\right)=\sum_{s=i}^{N} q_{s} y_{c s} W_{\perp}\left(\xi_{s}\right)
\end{aligned}
$$

$$
E_{\|}\left(\xi_{s}\right)=\sum_{s=i}^{N} q_{s} W_{\|}\left(\xi_{s}\right)
$$

Xcs, ycs is the leading slice offset
_s is the position of the test slice respect to the leading slice

Emittance computation

$$
\varepsilon_{n x}=\sqrt{<(x-<x>)^{2}><\left(\beta \gamma x^{\prime}-<\beta \gamma x^{\prime}>\right)^{2}>-<(x-<x>)\left(\beta \gamma x^{\prime}-<\beta \gamma x^{\prime}>\right)>^{2}}
$$

$<>=\frac{1}{N} \sum_{n=1}^{N}=\frac{1}{S \cdot M} \sum_{s=1}^{S} \sum_{m=1}^{M}=\frac{1}{S} \sum_{s=1}^{S}<>$

$$
\begin{aligned}
& \varepsilon_{n}^{e^{2}}=\left\langle\frac{X^{2}}{4}\right\rangle\left\langle\frac{p_{X}^{2}}{4}\right\rangle-\left\langle\frac{X p_{X}}{4}\right\rangle^{2} \\
& \left(\varepsilon_{n}^{c}\right)^{2}=\left\langle\left(x_{c}-\left\langle x_{c}\right\rangle\right)^{2}\right\rangle\left(\left(p_{x_{c}}-\left\langle p_{x_{c}}>\right)^{2}\right\rangle-\left\langle\left(x_{c}-\left\langle x_{c}\right\rangle\right)\left(p_{x_{c}}-<p_{x_{c}}>\right)^{2}\right.\right. \\
& \left.\left(\varepsilon_{n}^{\text {cross }}\right)^{2}=\left\langle\frac{X^{2}}{4}\right\rangle\left(\left(p_{x_{c}}-\left\langle p_{x_{c}}\right\rangle\right)^{2}\right\rangle+\left\langle\frac{p_{X}}{4}\right\rangle\left(\left(x_{c}-\left\langle x_{c}\right\rangle\right)^{2}\right\rangle-2\left(\frac{X p_{X}}{4}\right)\left(\left(x_{c}-\left\langle x_{c}\right\rangle\right)\left(p_{x_{c}}-<p_{x_{c}}\right\rangle\right)\right\rangle
\end{aligned}
$$

$$
\varepsilon_{\text {ntot }}=\sqrt{\varepsilon_{n}^{e^{2}}+\varepsilon_{n}^{c^{2}}+\varepsilon_{n}^{\text {cross }^{2}}}
$$

Application to the SPARC photo-injector

- emittance preservetion for misaligned structures
- emittance degradation and energy spread in the emittance meter experiment

Correction of a Misaligned Configuration

Steerings and BPMs: centroid offset minimization respect to the nominal axis

Centroid position along the structure with and without correction

Without steering

ex nominal	ex steer off	ex steer on
$0.79 _\mathrm{m}$	$2.95 _\mathrm{m}$	$1.08 _\mathrm{m}$

ey nominal	ey steer off	ey steer on
$0.79 _\mathrm{m}$	$1.12 _\mathrm{m}$	$1.06 _\mathrm{m}$

Beam Based Alignment technique: emittance minimization

Transfer matrix to determine the steerings' angle to be inserted in Homdyn

$$
\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{2}=\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h \\
i & l & o & p \\
m & n & q & b
\end{array}\right)\left(\begin{array}{l}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{1}
$$

First step-> determine the matrix element

Second step-> determine the angle (horizontal and vertical) for each steering

Emittance along the structure

without steering

ex nominal	ex steer off	ex steer on
$0.79 _m$	$2.95 _m$	$0.79 _m$

ey nominal	ey steer off	ey steer on
$0.79 _\mathrm{m}$	$1.12 _\mathrm{m}$	$0.79 _\mathrm{m}$

Initial laser offset effects

Centroid position at the undulator entrance

Angle at the undulator entrance

Energy Spread and Emittance Degradation in the Emittance meter

Bellow	$\boldsymbol{a} \mathrm{mm}$	$\boldsymbol{b} \mathrm{mm}$	$\boldsymbol{g} \mathrm{mm}$
first	26.0	47.5	3.40
second	51.25	75.0	4.00

Emittance degradation in percent vs the bellow misalignemnt

Energy spread degradation along the bellow structure

Conclusions

- The Homdyn code has been improved, including off axis beam dynamics and wake fields
- The code has been used for the study of a misaligned correction scheme in the SPARC project :
-The study shows the scheme can correct the centroid position until the entrance of the undulator
-The preliminary study of the laser pointing instability shows that a stability of 100 _m can satisfy the undulator matching condition
-The code allowed the study of the wake fields in the emittance meter thus a geomtery for the emittance meter could be chosen

Validation with Parmela of the Emittance Computation

Without space charge

On Axis

a)

Off Axis

With space charge

UNDULATOR \& FEL	A	B
Undulator period (cm)	3.0	3.0
\# Undulator sections	6	6
Undulator parameter	1.4	1.4
Undulator field on axis (T)	11	11
Undulator gap (mm)	2.13	2.13
Undulator section length (m)	50.36	0.36
Drifts between undulator sections (m)	290	
FEL wavelength (nm)	<14	NA
Saturation length (m, geometrical)	8	NA
FEL pulse length (ps)	>80	NA
FEL power @ saturation (MW)		NA
Brilliance (st. units)	10^{15}	NA
\# Photons/pulse	>10	NA
FEL power @ sat. (MW) 3d harm.	>0.7	NA
FEL power @ sat. (MW) 5 ${ }^{\text {th }}$ harm.		

