WAKE FIELDS EFFECTS IN A HIGH BRIGHTNESS PHOTO-INJECTOR

M. Ferrario, V. Fusco, M. Migliorati

Outline

•The Homdyn code: model and improvements

•Applications to the SPARC project:

- emittance preservation for misaligned structures
- emittance degradation and energy spread in the emittance meter experiment

Emittance degradation due to

non linear e.m. fields

Longitudinal correlation along the bunch induced by e.m

e.m.: RF fields, space charge, WAKE FIELDS

WAKE FIELDS have been inserted in the HOMDYN code

On axis — Envelope equations

 $\ddot{y} + \beta \gamma^2 \dot{\beta} y + (k^{rf} + k^{sol})^2 y = \frac{e}{\gamma^3 m} E_x^{sc}(\xi_s, A_{xs}, y) + \left(\frac{4\varepsilon_n^{th}}{\gamma}\right)^2 \frac{1}{v^3}$

Off axis — Centroid equations

Wake fields diffraction model:

hp: L<< a _>>c/a pill-box cavity

By a convolution of the Green function with the uniform distribution

$$W_{||}(s) = \begin{cases} 0 & s < 0 \\ \frac{2}{\sqrt{2}} \frac{Z_{0}c}{\pi^{2}aL} \sqrt{gs} & 0 < s < L \\ \frac{2}{\sqrt{2}} \frac{Z_{0}c}{\pi^{2}aL} \sqrt{g} \left(\sqrt{s} - \sqrt{s - L}\right) & s > L \end{cases}$$
 Longitudinal wake field
$$W_{\perp}(s) = \begin{cases} 0 & s < 0 \\ \frac{2^{5/2}}{3} \frac{Z_{0}c}{\pi^{2}a^{3}L} \sqrt{g} s^{3/2} & 0 < s < L \\ \frac{2^{5/2}}{3} \frac{Z_{0}c}{\pi^{2}a^{3}L} \sqrt{g} \left(s^{3/2} - (s - L)^{3/2}\right) & s > L \end{cases}$$
 Transverse wake field

Green function

Periodic structure

$$W_{||}(s) = \begin{cases} 0 & s < 0\\ \frac{2Z_0 c s_1}{\pi a^2 L} \left[1 - e^{-\sqrt{s/s_1}} \left(1 + \sqrt{\frac{s}{s_1}} \right) \right] & 0 < s < L\\ \frac{2Z_0 c s_1}{\pi a^2 L} \left[e^{-\sqrt{\frac{s-L}{s_1}}} \left(1 + \sqrt{\frac{s-L}{s_1}} \right) - e^{\sqrt{\frac{s}{s_1}}} \left(1 + \sqrt{\frac{s}{s_1}} \right) \right] & s > L \end{cases}$$

Longitudinal wake field

$$W_{\perp}(s) = \begin{cases} 0 & s < 0\\ \frac{4Z_0 c s_2^2}{\pi a^4 L} \left[-6 + \frac{s}{s_2} + 2e^{-\sqrt{\frac{s}{s_2}}} \left(3 + 3\sqrt{\frac{s}{s_2}} + \frac{s}{s_2}\right) \right] & 0 < s < L\\ \frac{4Z_0 c s_2^2}{\pi a^4 L} \left\{ \frac{L}{s_2} + 2\left[e^{-\sqrt{\frac{s}{s_2}}} \left(3 + 3\sqrt{\frac{s}{s_2}} + \frac{s}{s_2}\right) + \right. \\ \left. + e^{-\sqrt{\frac{s-L}{s_2}}} \left(-3 - 3\sqrt{\frac{s-L}{s_2}} - \frac{s-L}{s_2} \right) \right] \right\} & s > L \end{cases}$$

Transverse wake field

Asymptotic wake fields obtained numerically and fitted to a simple function K. Bane

The single slices generate wake fields:

Xcs, ycs is the leading slice offset _s is the position of the test slice respect to the leading slice

Emittance computation

$$\varepsilon_{nx} = \sqrt{\langle (x - \langle x \rangle)^2 \rangle \langle (\beta \gamma x' - \langle \beta \gamma x' \rangle)^2 \rangle - \langle (x - \langle x \rangle)(\beta \gamma x' - \langle \beta \gamma x' \rangle) \rangle^2}$$

$$<>=\frac{1}{N}\sum_{n=1}^{N}=\frac{1}{S\cdot M}\sum_{s=1}^{S}\sum_{m=1}^{M}=\frac{1}{S}\sum_{s=1}^{S}<>$$

$$\varepsilon_n^{e^2} = <\!\! \frac{X^2}{4} \! > <\!\! \frac{{p_X}^2}{4} \! > - <\!\! \frac{X p_X}{4} \! >^2$$

$$(\mathcal{E}_{n}^{c})^{2} = \left\langle (x_{c} - \langle x_{c} \rangle)^{2} \right\rangle \left\langle (p_{x_{c}} - \langle p_{x_{c}} \rangle)^{2} \right\rangle - \left\langle (x_{c} - \langle x_{c} \rangle)(p_{x_{c}} - \langle p_{x_{c}} \rangle)^{2} \right\rangle^{2}$$

$$(\varepsilon_n^{cross})^2 = \left\langle \frac{X^2}{4} \right\rangle \left\langle (p_{x_c} - \langle p_{x_c} \rangle)^2 \right\rangle + \left\langle \frac{p_X^2}{4} \right\rangle \left\langle (x_c - \langle x_c \rangle)^2 \right\rangle - 2\left\langle \frac{Xp_X}{4} \right\rangle \left\langle (x_c - \langle x_c \rangle)(p_{x_c} - \langle p_{x_c} \rangle) \right\rangle$$

envelope

centroid

cross

$$\varepsilon_{ntot} = \sqrt{\varepsilon_n^{e^2} + \varepsilon_n^{c^2} + \varepsilon_n^{cross^2}}$$

Application to the SPARC photo-injector

- emittance preservetion for misaligned structures
- emittance degradation and energy spread in the emittance meter experiment

Correction of a Misaligned Configuration

Steerings and BPMs: centroid offset minimization respect to the nominal axis

Centroid position along the structure with and without correction

Without steering

With steering

ex	ex	ex
nominal	steer off	steer on
0.79_m	2.95_m	1.08_m

еу	еу	еу
nominal	steer off	steer on
0.79_m	1.12_m	1.06_m

Beam Based Alignment technique: emittance minimization

Transfer matrix to determine the steerings' angle to be inserted in Homdyn

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{2} = \begin{pmatrix} a & b & e & f \\ c & d & g & h \\ i & l & o & p \\ m & n & q & b \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{1}$$

First step-> determine the matrix element

Second step-> determine the angle (horizontal and vertical) for each steering

Emittance along the structure

W	ith	OU'	t ste	eerii	nd

ex	ex	ex
nominal	steer off	steer on
0.79_m	2.95_m	0.79_m

еу	еу	еу
nominal	steer off	steer on
0.79_m	1.12_m	0.79_m

Centroid position at the undulator entrance

Angle at the undulator entrance

Emittance at the entrance of the undulator

Energy Spread and Emittance Degradation in the Emittance meter

g mm	\boldsymbol{b} mm	a mm	Bellow
3.40	47.5	26.0	first
4.00	75.0	51.25	second

Emittance degradation in percent vs the bellow misalignemnt

Energy spread degradation along the bellow structure

Conclusions

- The Homdyn code has been improved, including off axis beam dynamics and wake fields
- The code has been used for the study of a misaligned correction scheme in the SPARC project :
 - -The study shows the scheme can correct the centroid position until the entrance of the undulator
 - -The preliminary study of the laser pointing instability shows that a stability of 100 _m can satisfy the undulator matching condition

•The code allowed the study of the wake fields in the emittance meter thus a geomtery for the emittance meter could be chosen

Validation with Parmela of the Emittance Computation

Without space charge

On Axis

With space charge

On Axis

Off Axis

e_mm mrad

UNDULATOR & FEL	A	B
Undulator period (cm)	3.0	3.0
# Undulator sections	6	6
Undulator parameter	1.4	1.4
Undulator field on axis (T)		
Undulator gap (mm)	11	11
Undulator section length (m)	2.13	2.13
Drifts between undulator sections (m)	0.36	0.36
FEL wavelength (nm)	500	290
Saturation length (m, geometrical)	< 14	NA
FEL pulse length (ps)	8	NA
FEL power @ saturation (MW)	> 80	NA
Brilliance (st. units)		NA
# Photons/pulse	10 ¹⁵	NA
FEL power @ sat. (MW) 3rd harm.	> 10	NA
FEL power @ sat. (MW) 5th harm.	> 0.7	NA

0.04 mm	Xc
0.02 mmrad	Xc'