Observation of Ultra-Wide Bandwidth SASE FEL

Gerard Andonian Particle Beam Physics Laboratory University of California Los Angeles

The Physics and Applications of High Brightness Electron Beams Erice, Sicily, October 9-14, 2005

Collaboration

- UCLA
 - G. Andonian, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig, G. Travish
- BNL-ATF
 - M. Babzien, I. Ben-Zvi, J. Huang, V. Litvinenko, V. Yakimenko
- INFN-LNF
 - M. Ferrario, L. Palumbo, C. Vicario

Outline

- Experiment Description
- VISA I Summary
- VISA IB Experiment
 - Results
 - Analysis (Start-to-end)
 - Double Differential Spectrometer
- VISA II
- Seeded Amplifier Experiment
- Conclusions

Motivation

- Proposed Scheme for ultra short pulses
 - Energy chirped e-beam \rightarrow FEL \rightarrow freq. chirped radiation
- Explore Limits of SASE FEL with energy chirped e-beam
- Develop advanced beam manipulation techniques & measurements

Experiment Layout

- Accelerator Test Facility (ATF) at BNL
 - Host for VISA I & II
 - 70 MeV beam
 - 28 m beam transport
 - 20 deg bend (F-line)
- Undulator
 - 4 x 1m sections
 - FODO lattice superimposed (25 cm period) –strong focusing
 - External steering coils (8)
 - Intra-undulator diagnostics
 - 50 cm apart
 - double-sided silicon
 - SASE FEL
 - e-beam (OTR)

VISA Undulator Par	ameters
Undulator type	Planar (NdFeB)
Number of periods (N _u)	220
Peak field (B _{pk})	.75 T
Undulator Period (λ_u)	1.8 cm
Gap (g)	6 mm
Undulator Parameter (K)	1.26

VISA I Summary

- Results
 - Gain ~ 10⁸ due to nonlinear compression in dog-leg (F-line)
 - Shortest gain length recorded in NIR (~ 18 cm)
 - Higher order angular spectra
 - CTR & Higher Harmonic Gain
- Start to End Simulation Suite
 - UCLA Parmela
 - Elegant
 - Genesis
- Codes Benchmarked to measurements
 - Post linac, post-dogleg, FEL

Far-field radiation pattern (angular spectrum): measured (left), simulation (right)

VISA IB: Experiment

- High gain FEL
 - Chirped beam amplification
 - SASE energy ~2 μJ
 - close to saturation
- Up to 15% bandwidth observed
- Very reproducible and unusually stable
 - insensitive to RF drifts and phase jitter
- Characteristic double-spike structure

Wavelength Spectrum of FEL at VISA measured with Ocean Optics USB2000 Spectrometer.

VISA IB: Experiment

- High energy slits (HES)
 - adjustable collimator
 - Controls beam size in F-line
- FEL stability
 - same fraction of beam propagates through HES, regardless of centroid jitter
- Compression
 - monitored by Golay cell
 - measures CTR
 - CTR peaked when p₀ set to optimize compression
 - Current ~ 300A
 - Compression stronger
 - higher degree of chirp

e-beam at HES

- a) fully closed slits (500 pC, 2.8% chirp)
- b) fully open slits (60 % Transmission, 330pC)

VISA IB: Analysis

- Start-to-End
 - Experimental
 Spectrum features
 reproduced
 - Angles Important
 - Off-axis Doppler Shift

FEL output Spectrum reproduced by Genesis (~11% bandwidth)

VISA IB: Analysis

- Linear chirp applied at linac
- Compression in dogleg
 - Portion of beam is always in "correct" comp. regime
 - Collimation ~40% (300 pC)
 - Benchmarked to data taken in F-line
- Leads to off-axis injection of compressed core

- High Current
 - I ~ 300 A
 - Better than VISA I

VISA IB: Analysis

- Start-to-End
 - Beam radius
 - Bandwidth Evolution
 - Oscillates with double the freq. as betatron motion
 - Mismatch due to dispersion
 - Off-axis gain when beam is small
 - Final growth in BW near saturation

Double Differential Spectrum

Double differential spectrum: Experimental Setup

 Double Differential Spectrum (DDS)

ω

- Unfolds correlation between angle (slits) and frequency (gratings)
- Preliminary setup
 - improvements coming
 - calibration lamp
 - graduated slits

Genesis Simulation of DDS for VISA IB running conditions

θ

VISA II

- Energy chirp SASE FEL operation
 - linearize transport
 - Sextupole correction in F-line
- Running Conditions
 - Back of crest acceleration
 - Negative R₅₆ compression
 - 70% Transmission
- Start-to-end Simulations
 - High Current
 - Low Emittance
 - High gain FEL
 - Frequency chirped radiation
- Modified FROG

Longitudinal Phase Space for VISA II Case post linac (above) and pre-undulator (below).

Modified FROG

- Grenouille
 - single shot, auto aligning, SHG FROG
 - yields full pulse phase & intensity
- Resolution
 - System is too constrained by doubling crystal
 - Replace thick crystal with thin crystal and spectrometer
- Cutting edge measurement
 - Interrogation on fs scale

S.Cialdi, "Temporal Characterization of FEL pulse by Grenouille", PBPL Seminar Series, Lecture 11

FROG Simulations

- FROG output for VISA II (Genesis)
 - Spectrogram
 - visualize chirp
 - pulse profile is reproduced
 - Power ~ $|E|^2$

Phase (red)

E-field (green)

Temporal profile of VISA II pulse: Genesis output (left) FemtoSoft FROG reconstruction (right).

Seeded Amplifier

- Motivation
 - Control and manage high power FEL beam in far-field
 - Establish transverse coherence with seeded pulse (low bandwidth, high brightness)
- Far field studies
 - Increase angle, decrease intensity
 - Need short gain length to obtain short Rayleigh length
 - e.g. deliver high power without damaging optics
- Experiment
 - VISA undulator with 61 MeV beam
 - Seed with 1064 nm YAG
- Alignment Issues
 - Delay line
- Study detuning effects with start-toend simulations

Conclusions

- VISA yields rich data sets
 - VISA I, VISA IB
 - Observed ultra wide bandwidth
 - High gain chirped beam FEL
 - Further studies on hollow modes
 - Confidence in Start-to-end suite
- Develop new diagnostics
- Seeded amplifier runs & data forthcoming