Numerical simulation and experimental demonstration of seeded FEL at BNL-NSLS

T. Watanabe, X.J. Wang, D. Liu, J.B. Murphy, J. Rose, T. Shaftan and L.H. Liu, BNL, USA P. Sprangle, NRL, USA S. Reiche, UCLA, USA

Outline

- Directed energy application of FEL
- Numerical simulation of MW amplifier
- Experimental demonstration of seeded FEL

DUV-FEL facility at BNL-NSLS

SDL facility at BNL-NSLS

SDL facility at BNL-NSLS

Single-pass seeded FEL

National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL)

SASE / seeded FEL

On going works

- High Gain Harmonic Generation (HGHG)

Directed energy application of FEL

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 12, DECEMBER 2004

Design of a Compact, Optically Guided, Pinched, Megawatt Class Free-Electron Laser

Phillip Sprangle, Fellow, IEEE, Bahman Hafizi, Member, IEEE, and Joseph R. Peñano

Fig. 1. Schematic of high-gain FEL amplifier with a grazing relay mirror. The input signal can be obtained from a solid-state laser or FEL oscillator. The radiation beam is optically guided in the wiggler and optically pinched at the exit. The pinched optical beam has a shortened Rayleigh range and undergoes rapid diffraction upon exiting the wiggler. Employing a grazing incidence configuration, the resultant footprint on the relay mirror can be made sufficiently large to avoid damage.

 $K = 1.26, \lambda u = 1.8 \text{ cm}$

Procedure

High peak current e-beam High peak power seed laser

+

=

Short Rayleigh length FEL light & MW output

 $P_{sat} = \rho P_{e-beam}$

 $L_{sat} \approx 20 \times L_G$ (for SASE)

Further step

Study on far field of FEL light at the end of undulator

Transverse control of FEL - peak current -

RMS vs FWHM Z. Huang and K.-J. Kim, NIM A 483, 504 (2002).

Transverse control of FEL - seed laser power -

Evolution of far-field FEL light inside undulator Saturation Output Input Exp Gain Leak of radiation Input After saturation Exp gain regime * Calculated by GENESIS. Lethagy regime

Experimental observation : A. Murokh et al., PRE 67, 066501 (2003). G. Andonian, today's talk.

Final design

Duty factor = 1.4 [ps] x 700 [MHz] = 0.1 [%]

 $\frac{1.0 \text{[MW]}}{\sqrt{2} \times \pi \times (1.5 \text{[cm]})^2} \approx 100 \text{[kW/cm}^2 \text{]} \sim \text{damage threshold of mirror}$

Experimental demonstration

Future goal : seeded FEL at 1.0 µm using 2-m VISA undulator

At present, 1.0 µm seed laser and 2-m VISA undulator are not installed.

SASE from 0.8 to 1.0 μm

Seeded FEL at 0.8 µm

using 10-m NISUS undulator. V = 1.08

K = 1.08 $\lambda_u = 3.89 \text{ cm}$ # periods = 256

SASE from 0.8 to 1.0 μm

Spatial image of SASE

Gain curves

Gain length when radiation size is larger than e-beam size

$$L_{\rm G}^{-1} = \frac{4\pi}{\lambda_{\rm u}} \frac{3^{3/4}}{2} \sqrt{\frac{\rm I}{\gamma \, \rm I_A} \frac{\rm K^2[\, JJ\,]^2}{\left(1 + \rm K^2/2\right)}}$$

Spatial profiles of harmonics

* Magnification of each image is different.

Z. Huang and K.-J. Kim, PRE 62, 7296 (2000).

Pulse duration of harmonics

* estimated by Hamamatsu Photonics.

GENESIS calculation

Experimental result

~ 5nm bandwidth

E-beam chirp in SASE Y.Li et al., PRL 89 230841 (2002).

Input chirp	Negative	None	Positive
Bandwidth (nm)	1.5	2.0	3.5

Conclusion

MW class FEL was conceptually designed and seeded FEL in IR was experimentally demonstrated.

SASE from 0.8 to 1.0 μ m observed.

≻Gain curve of seeded FEL obtained.

- Spatial distributions of harmonics observed.
- Spectrum broadening due to laser chirp considered.
- ≻Longitudinal distributions of harmonics measured.

Future work

Repeat the experiment to verify

- Gain length v.s. input seed power
- Ratio of radiation size between each harmonic
- Longitudinal pulse duration at each harmonic

