Needle cathodes for high-brightness beams

Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau

Outline of the talk

- What is brightness?
 - Definition
 - Sources
- Why is brightness important?
 - Light sources
 - FELs
- How do we get high brightness?
 - Photoemission
 - Field emission
 - Photofield emission

Definition of brightness

- Emittance is
 - $\pi^{-1} x$ area in phase space (old definition)
 - Or, weighted average over beam (rms emittance)

Brightness is

ヽノ

- Density in transverse phase space
- Local property of beam

Electron sources span many orders of magnitude in brightness and current

Why brightness is more important than current

- Brightness is a useful figure of merit
 - Normalized brightness is roughly invariant with respect to beam current, electron energy
 - Can be used to compare different devices
- Often it's the most important parameter
 - When brightness is the most important parameter, lower current may be possible
 - Lower current reduces other problems, including radiation, halo, CSR, space charge

Spectral brilliance of Compton x-rays depends on brightness, not current

• For small emittance

spectral brilliance is

power gain is independent of current

$$\overline{\sqrt{}}$$

Claudio's microwave-undulator x-ray FEL (FEL 2005)

- Parameters
 - $\lambda_W = 1.45 \text{ cm}$ $a_W = 0.4$ $\gamma = 2150$ $\lambda_L = 2 \text{ nm}$
- M. Xie formulas $I_e = 2000 \text{ A}$ $B_N = 2.5 \times 10^{13} \text{ A/m}^2\text{-sr}$ $\mu = 0.7 /\text{m}$

- Gain in strong-guiding regime (my formula) μ = 0.8 /m
- Minimum current for strong guiding
 I_e > 400 A
- Beam diameter
 d = 70 μm

High electric fields at the surface enhance cathode performance

- High electric fields:
 - Conventional DC guns ~ 10⁶ V/m
 - Conventional RF guns ~ 10^7 10^8 V/m
 - Needle cathodes ~ $10^9 10^{10}$ V/m
- Enhanced performance due to
 - Schottky effect on photoemission
 - Field emission
 - Photo-field emission
 - Reduced space-charge effects

Electron emission at the surface of a metal in vacuum occurs by four mechanisms

Schottky effect reduces surface barrier at high electric field

• Field is enhanced at tip of needle

• Schottky effect lowers barrier at surface

Schottky effect enhances quantum efficiency of needle cathodes

• Threshold law for quantum efficiency

- Holds over wide range
- Increases QE by orders of magnitude

Laser damage to cathode limits achievable photocurrent density

- Figure of merit for cathodes is $\eta_{QE} \times P_{damage}$
- Tungsten cathodes
 - $P_{\text{damage}} \sim 10^{12} \text{ W/m}^2 \text{ for 5-ns pulses}$
 - $P_{\text{damage}} \sim 10^{14} \text{ W/m}^2 \text{ for 1-ps pulses}$
- Limiting current density for $QE \sim 10^{-4}$
 - $J_{\rm max} \sim 10^7 \,{\rm A/m^2}$ for 5-ns pulses
 - $J_{\rm max} \sim 10^9 \,\text{A/m}^2$ for 1-ps pulses
- Highest current densities will be space-charge limited

Space-charge limits current density

• Planar geometry

Spherical geometry*

• For small spot size (<< tip radius)**

• For $E_{\rm tip} \sim 10^9$ V/m, $r_{\rm tip} \sim 1$ mm, $J \sim 10^8$ A/m²

* *a*² = O(5 -10) **Y. Y. Lau

Needle cathodes produce high brightness in RF guns*

• Field at cathode enhanced by

• Example:

- 1 mm diameter, 1 cm long
- $E_0 = 50 \text{ MV/m}$
- $E_{tip} = O(500 \text{ MV/m})$
- Space-charge limit ~ 10⁸ A/m²
- Brightness ~ 10^{13} A/m²-str
 - before pulse compression!

* Lewellen, Sardegna

Field emission involves electrons in levels near the Fermi level

• Tunneling through barrier causes characteristic steep voltage dependence (Fowler-Nordheim)

The characteristic steep voltage dependence of photo-field emission at 514 nm strongly indicates tunneling from just above the Fermi level

Photoelectrons excited from d-conduction band into s-conduction band where they reside just above Fermi level for ~ microsecond

• No effect observed in ZrC (only one conduction band)

Conclusions

- High brightness is often more important than high current
- Needle cathodes operate at high electric fields (10⁹ 10¹⁰ V/m)
 - Enhanced emission from cathode
 - Reduced space-charge effects
- Interesting physical effects are found at high electric fields
 - Field-enhanced photoemission (Schottky)
 - Photo-enhanced field emission (tunneling)