

RF deflector-based sub-ps beam diagnostics: application to FELs and advanced accelerators

David Alesini

(LNF-INFN, Frascati, Rome)

ERICE, October 9-14, 2005

OUTLINE

- 1) Bunch length
- 2) Longitudinal phase space measurements
- 3) Slice emittance measurements
- 4) Beam manipulation: ultra-short bunch generation
- 5) Diagnostics with a circular polarized RF deflector

Diagnostics & Manipulation

- 1) Traveling wave deflectors
- 2) Standing wave deflectors

RF Deflecting structures

1) Bunch length measurements: ideal case

[G. A. Loew, SLAC-PUB 135,1965] **PRINCIPLE**

In the ideal case the y-z correlation on the

1) Bunch length measurements: sources of errors (1/2)

 $\sigma_{y_meas} = \sigma_{y_RFD} + \sigma_{y_ES}$

a) Vertical beam size $V_T \omega_{RF} \sqrt{\beta_D} \sin(\Delta \Phi) \ge \frac{c(E/e)\sqrt{\varepsilon}}{\sigma_z}$ $\sigma_{y_BEAM} = \sqrt{\beta_s \varepsilon} \, \Box \rangle \, \sigma_{y_meas} = \sqrt{\sigma_{y_RFD}^2 + \sigma_{y_BEAM}^2} \, [$ $\sigma_{z_RES} = \frac{c(E/e)\sqrt{\varepsilon}}{V_T \omega_{RE} \sqrt{\beta_D} \sin(\Delta \Phi)}$ High res. Low res. $\sigma_{y_meas}^2$ K_{T_eff} σ_{y_BEAM} e.g. energy variation along the bunch linearly correlated b) Bunch energy spread: in time E=E₀(1+ $\sigma_{\rm E}/\sigma_{\rm z}z$) [P.Emma, et al. LCLS,TN-00-12,2000] $\varphi_{RF} = 0$ requires an **on-axis screen** $\sigma_{y_{ES}} = \sigma_E \frac{V_T \sin \varphi_{RF}}{E/e} \sqrt{\beta_D \beta_S} \sin(\Delta \Phi)$ measure the spot size for two phases $\varphi = \varphi_0$ SPARC and $\varphi = \varphi_0 + \pi$ and average the two

1) Bunch length measurements: sources of errors (2/2)

1) Bunch length measurements: power schemes (e.g.)

1) Bunch length measurements: experimental results

intensity

vertical distance [mm]

0.4

0.2

a) SLAC LINAC [P. Emma et al., EPAC 2002] Projected Vertical Beam Profile: o = 0.5399 m Projected Vertical Beam Profile: c = 0.11728 n 150

2.44 m TW RFD; P_{IN_MAX}=20 MW; E_{BEAM}=28GeV.

b) CTF3 (CERN) INJECTOR [A. Ghigo et al., PAC 2005]

2) Longitudinal phase space measurements

5) Diagnostics with a circular polarized RF deflector: exp. results

[J. Haimson et al, AIP, 737, 2004]

Number of Cavities	2
Operating Frequency	~17 GHz
Nominal Beam Energy	15 MeV
RF Deflection Angle	~27 mradian
Drift Distance	2 m
Beam Deflection @ Screen	57 mm
Peak RF Input Power	734 kW
Normalized Emittance	2.8π mm.mrad
Longitudinal resolution	~100 fs
Bunch length	~5 mm

6) Traveling wave deflectors: β_{g} , efficiency, dispersion curve

6) Traveling wave deflectors: performances

 $\begin{array}{l} E_{\rm B} = 2 \; {\rm GeV}; \\ \varepsilon = 2 \; mm \; mrad; \\ a = 20 \; mm \; @ \; 2.856 \; {\rm GHz}; \\ a = 5 \; mm \; @ \; 11.424 \; {\rm GHz}; \\ \beta_{\rm D} = 20 \; m; \; \Delta \phi = 90 \; {\rm deg}; \end{array}$

5) Standing wave deflectors: RF measurements

@ Univ. "La Sapienza", Rome

B, E components dielectric and metallic objects

x 10⁻⁶ 0 $\Delta \omega / \omega$ -10 -15 teflon cilinder metallic cilinder -20 B² profile obtained by subtraction 0.05 -0.15 -0.1 -0.05 0 0.1 0.15 z [m]

Perturbing objects

Ez component off axis metallic needle (Panofsky-Wenzel Theorem)

6) Standing wave deflectors: performances

 $E_B = 2 \text{ GeV};$ $\varepsilon = 2 \text{ mm mrad};$ a = 20 mm @ 2.856 GHz; a = 5 mm @ 11.424 GHz; $\beta_D = 20 \text{ m}; \Delta \phi = 90 \text{ deg};$

COMPARE RFD SW-TW

	SW	TW
Efficiency per unit length	High	Low
Filling time	Proportional to the quality factor:generally slow (~μs @ 2.856 GHz)	Proportional to the group velocity and length: generally fast (~0.1 μs @ L=1m)
Maximum number of cells	The maximum number of cells is limited to about 10 because of mode overlapping	After L=2 \div 3/ α the deflecting field decreases
Deflecting field vs. #of cells N	N ^{1/2}	(1-e ^{-αN})/α
Power system	A circulator is generally needed to protect the klystron	Circulator not necessary.
E _{PEAK}	It can limit the maximum input power	Not a big constraint
Temperature sensitivity	Necessity of an automatic tuning system or of a very good temperature stabilization	Less temperature sensityvity
Beam impact	low	High
Resolution vs. freq.	1/f ^{3/4} (N fixed)	1/f ² (L fixed, small dissipation)
SPARC INFN Litituto Nazionale di Fisica Nucleare	Compact device (space) Low input power Long pulse length Circulator	

C

Laboratori Nazionali di Frascat

CONCLUSIONS

Diagnostics & Manipulation:

- 1) Simple principle applicable to different type linear injector;
- 2) Theory of measurement: resolution and source of errors;
- 3) Longitudinal and transverse phase space characterization;
- 4) Short bunch generation;
- 5) Circular polarized concept;
- 6) Experimental results already available (CTF3, SLAC, DESY, ...);

RF Deflecting structures:

- 1) TW and SW deflectors design criteria;
- 2) Compare and peculiarities of TW and SW devices;
- 3) SW devices to be installed (SPARC, UCLA);

THANKS TO...

A. Mostacci, L. Ficcadenti, L. Palumbo, C. Vaccarezza, G. Di Pirro, B. Spataro, J. Rosenzweig, J. England, J. Haimson.