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Outline

• Modulated beams, “tools” for longitudinal phase space

• Modulation generated by collective effects
! Longitudinal Space Charge effect

! Coherent Synchrotron Radiation effect

! Cure: LCLS “laser-heater”

• Creating modulated beams for radiation sources
! Seeded FEL schemes/Tunability

! Study of modulated bunch with an energy chirp

! Beams modulated at photocathode " THz generation

! Self-seeded schemes

• Conclusion
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Longitudinal phase space of modulated beam
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“Tools”Dispersion in:

An energy modulated beam

Accelerator tank

Chirp in:
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Modulation driven by collective effects

Longitudinal Space ChargeLongitudinal Space Charge

• LSC drives small density 
clusters into energy modulation

from: Z.Huang et al., FEL-2002

density modulation

energy modulation
R56

LSC
impedance

s
density

modulation
energy 

modulation

• This process can be initiated by
either density or energy modulation



Brookhaven Science Associates

U.S. Department of Energy

CSR

from: M. Borland et al., FEL-2002
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Longitudinal Space Charge
• LSC oscillation frequency:

&=f(!mod, Ip, …)

• Compression (factor n) of
modulated bunch: Ip ' n times,
!mod ( n times: & ' n times.

• " Energy modulation gets
compressed together with faster
growth of it’s amplitude

• Initial modulation spectrum
seeded by noise is amplified
depending on what you do with
the beam
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Examples of modulated bunch

Compression of modulated bunch

TTFTTF
SDLSDL

Z. Huang, W. Graves, C. Limborg, H. Loos,
T. Shaftan, Z. Wu
From: W. Graves et al., PAC-2001,
H. Loos et al., EPAC-2002,
Z. Huang et al., FEL-2003
T. Shaftan et al., PAC-2003
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LSC oscillation wavelength [m] versus modulation wavelength [um] for
uncompressed (50 A) and compressed (220 A) beam
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* Space charge impedance (Z. Huang):
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* Example: low-noise RF TWT.
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30&70 um initial modulation30&70 um initial modulation

Bunch spectra for
different energy

From: T. Shaftan and Z. Huang, PRST-AB-2004

E, MeV

t, ps

E, MeV

t, ps



Brookhaven Science Associates

U.S. Department of Energy

2 cm2 cm

10 cm10 cm

10 cm10 cm 50 cm50 cm

~120 cm~120 cm

))  ** 5.7 5.7ºº

• Laser-electron interaction in an undulator

induces rapid energy modulation (at 800 nm),

to be used as effective energy spread before

BC1 (3 keV# 40 keV rms)

• Inside a weak chicane for easy laser access,

time-coordinate smearing (emittance growth is

completely negligible)

10 period undulator

800 nm laser pulse800 nm laser pulse

from: Z.Huang, M. Borland, P. Emma, C. Limborg et al., SLAC-PUB-10334, 2004

Laser Heater

No heater

With heater
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Modulation in Radiation Sources

Early measurements of modulation after FEL
K.N. Ricci et al., in Proc. of  FEL-2001
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Seeded FELs
• R.Q.: How to modulate

bunch?

• Seed source creates energy
modulation " bunching at
fundamental or harmonics

• FEL process takes off from
a “known” signal, not from
noise: longitudinal
coherence

• Concepts: seeding with
lasers and HHG sources,
self-seeding, seeding with
short pulse, …

Undulator
e-

C
e-

C
e-

C

Cascades
e-

Seeded FEL

Radiator
e-

ModDS

HGHG

Undulator
e-

Self-seeding
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Conventional lasers/Chirped pulses

• Tunable conventional seed
lasers, OPA

• 13th harmonics of Ti:Sa at
61 nm, produced in Xe:
M.-E. Couprie, in FEL-
2005 (1 uJ, 50 fs, 10 Hz)

10600Carbon Dioxide

5000 - 6000Carbon Monoxide

1540Erbium:Glass

2600 - 3000Hydgrogen Fluoride

1064Nd:YAG

720 - 780Alexandrite

690 - 960Ti:Sapphire

630 - 950Laser Diodes

694.3Ruby

337.5 - 799.3 (647.1 - 676.4 most
used)

Krypton

543, 594, 612, and 632.8Helium Neon

532
Frequency doubled

Nd:YAG

457 - 528 (514.5 and 488 most used)Argon

511 and 578Copper Vapor

450 - 650Rhodamine 6G

325 - 442Helium Cadmium

353 and 459Xenon Fluoride

308 and 459Xenon Chloride

193Argon Fluoride

WAVELENGTH (Nanometers)LASER TYPE

t

!

e-beam

chirped
laser pulse

*

http://www.fas.org/man/dod-101/navy/docs/laser/fundamentals.htm$Common Lasers and Their Wavelengths
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Compression of modulated bunch
• Compression of modulation

wavelength (h1>>h2):

• "Ebeam is determined by RF
system (f.e., post-compressed
chirp can be used)

• "Ebeam is limited by the FEL
dynamics: how does chirp

affect the FEL output?
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How does energy chirp affect output radiation?
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DUV-FEL experiments, in Proc. of FEL-2005; Also, SASE

from chirped e-beam: G. Andonian et al., in PRL-2005
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Trends in HGHG spectrum
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What may modulation content in electron beam look like?
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before DS
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bunching content

• Symptoms: broadening of spectrum,
reduction of peak intensity; loss of
longitudinal coherence
• Trajectory/beam size are stable "
" longitudinal effect
• Diagnosis: Detuning due to drive laser –
RF phase drift
" charge (
,  compression (
,  " peak current (
,  energy (
,  " FEL gain (

• saturation comes later in the
radiator
• local chirp varies "can create
modulation of peak current along the
bunch

• this will affect FEL output spectrum
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• Self-seeding schemes: Pellegrini
et al., Saldin et al., S. Biedron et
al.,

• Quasi-isochronous SR: D.A.G.
Deacon (~1980)

• From: A. Matveenko, O.
Shevchenko and N.A. Vinokurov,
in FEL-2004 " wavelength of 50 nm

• Effect of quantum fluctuations of
SR on microbunched beam
transport is a limiting factor (V.
Litvinenko, see also Optics-free
FEL Oscillator in FEL Prize Talk,
2005, Å-scale feedback)

•  Emittance, energy spread are
limiting factors 65
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Self-seeded tunable FEL schemes
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Electron Beam Premodulation at the Photocathode

Courtesy of J. Neumann

Limitations on tunability range: drive laser bandwidth and LSC



Brookhaven Science Associates

U.S. Department of Energy

Conclusions

• Modulated beams in high-energy machines are rich and diverse
phenomena
• There are harmful collective effects and effective cures for them

! Landau damping, laser-heater
! Elimination of noise sources that seed the effects
! Irreproducibility and unpredictable time patterns of their
appearance
! Need for fast and reliable diagnostics on micro-scale

•Useful modulation in radiation sources
! Seeding and chirping of high-brightness bunch
! Tuning modulation wavelength
! Premodulation at photocathode for THz production
! Tunable self-seeded schemes

T. Watanabe, Superradiance in  a single-pass seeded FEL, Thursday, WG-3
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Å-scale Feed-back
• Use lower energy low current e-beam with VERY

LOW emittance and low energy spread for the
feed-back

• The feed-back-beam is energy-modulated and
carries-on the modulation to the entrance of the
FEL

High Gain FEL

Fresh e-beam Used e-beam Photons

Radiator Modulator

e-beam Source

Photons

Courtesy of V. Litvinenko, BNL
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Tracking Result of Hamilton Equation in Curvilinear System 

Courtesy of H. Hama, Tohoku University 

Isochronous THz ring: preserving
bunch form


