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Outline of talk

= How can we use a laser-driven plasma wave to
produce coherent electromagnetic radiation?

= Laser driven wakes

= Alpha-X

= Ultra-short bunch electron production using
wakefield accelerators

= Synchrotron and free-electron laser sources
= Conclusion and outlook
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Radiation sources: Synchroiron
and! Free-electron laser (FEL)

* Use output of wakefield accelerator to drive compact synchrotron light
source or FEL

» Take advantage of electron beam properties
« Coherent spontaneous emission: prebunched FEL I~!N+N(V.;1)f(k))

» Operate in superradiant regime: FEL x-ray amplifier (Self-similar evolution)

Potential compact future synchrotron source and x-ray FEL
* Need a low emittance GeV beam with < 50 fs electron beam with | > 1 kA
» Operate in superradiant regime: SASE alone is not adequate

* Need to consider injection or pre-bunching

Strathclyde Electron and ERICE 2005
Terahertz to Optical Pulse Source




ALPHA-X Programme

Main areas of research:

® Injectors (conventional and all-optical) ® Free-electron laser (FEL)
® Laser-plasma wake-field acceleration ® Beam transport systems
® Plasma capillaries ® Diagnostics
wakefield
rator
optical self- accele 0.1-1 Ge\/ \R to VUV
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Accelerators towards X-rays
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Advanced LLaser Plasma High-energy.
Accelerators towards X-rays: ALPHA-X (a-Xx )

Collaborative prOJect involving groups from the UK, EU and US

Strathclyde — injector, laser-plasma & FEL: experiments & theory
CCLRC RAL - theory & exps.: wakefield studies and diagnostics
Oxford — plasma channels

Imperial — all-optical injector, laser-plasma acceleration

CCLRC Daresbury — Injector, undulator & FEL

Dundee — injector, electron diagnostics & FEL

St Andrews University — theory

GOALS: Accelerate to 1 GeV in 1cm using a wakefield accelerator.
Demonstrate laser-driven light source: synchrotron or FEL

Funded by the Research Councils UK Basic Technology Proagramme
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People involved' in project

* Dino Jaroszynski, Klaas Wynne, Bob Bingham, Ken
Ledingham, Albert Reitsma, Yuri Saviliev, Slava Pavlov,
Riju Issac, David Jones, Bernhard Ersfeld, Steven
Jamison, Jordan Gallcher, Andrey Lyachev, Enrico
Brunetti, Mark Wiggins — Strathclyde

» Karl Krushelnick , Bucker Dangor , Zulfika Najmudin,
Malte Kaluza, Alex Thomson, Stuart Mangles — Imperial
College

* Bob Bingham, Henry Hutchinson, Peter Norreys,
Raoul Trines, Kate Lancaster, Chris Murphy — RAL
CCLRC

» Simon Hooker, Keith Burnett, lan Walmsley, Justin
Wark, Tony Gonsalves — Oxford

* Allan Gillespie, Allan McCloud, Steven Jamison, —
Dundee, Abertay-Dundee

* Alan Cairns — St Andrews
* Mike Poole, Mike Dykes, Jim Clark — Daresbury CCLRC
* Robin Tucker — Lancaster University

* Roland Saurbrey, Heinrich Schwoerer — Jena

* Gennady Shvets — Austin Texas
* Nicola Piovella — Milan

* Terry Garvey — LAL Orsay

* Wim Leemans - LBNL

* Antonio Ting — NRL

* Chan Joshi, Warren Mori, Tom Katsouleas —
UCLA, USC

* Brigitte Cros, Gregory Vieux — LPG, Orsay
* Padma Shukla — Bochum
* Tito Mendonca, Luis O Silva — IST Portugal

* Fred van Goor, Arsen Khachatryan, Kees
van der Geer, Marieke Loos, Bas van der
Geer, van der Wiel — The Netherlands

* Andrey Savilov, Vladimir Bratman — |AP,
Nizhniy Novgorod

Total of 63 people

FHE

P4, {INVERSITY OF
i ' §TRATHCLYDE
N : 4 /.)/,:" Iy CEASTIOW

Strathclyde Electron and
Terahertz to Optical Pulse Source

ERICE 2005



Sources: TOPS ASTRA, and OXFORD

TOPS (Strathclyde): 5 TW source (800nm, 50fs 10Hz 250mJ)
upgrade to 1.1J (20 TW) October 2005

RAL: ASTRA 1 J, 20 TW source and Gemini: 0.5 PW (in 2007)
Oxford: 2 TW source

Strathclyde: 8 MeV High-brightness sub-picosecond
photoinjector — being constructed

Other European facilities: FELIX, Lund, MPQ, DESY
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Capillary: preformed plasma
yaveguide
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Plasma waveguide
formation

m Aftert ~ 80 ns plasma in quasi
equilibrium.

= Ohmic heating of plasma balanced by
conduction of heat to wall
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Injection: Promising resulfs

Many groups have now
observed mono-
energetic beams

Still need to
demonstrate controlled
acceleration

Measurement of
electron bunch duration
needed to determine
peak current

Strathclyde Electron and
Terahertz to Optical Pulse Source
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ALPHA-X
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Interactions at higher
power: increases stability
01 beams
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Beam stability: electron
beam pointing

Krushelnick et al. Imperial
College

s Electron beam profile for E >
11 MeV
= Pointing inStabilityf~ 3°

= Multiple beamlets observed.

 Lanex screen 480mm
from target

 Contours at 1°, 2°, 3°, 4°
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Jena measurements

J J
HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Thomson scattering of the channel
above the gas nozzle
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‘State-ofi-the-art laser
driven wakefield accelerators

= Electron bunch charge of the order of 22 pC in the RAL experiments.

= In contrast, the LOA (gas jet) and LBNL (channel) experiments
produced 500 pC, 170 MeV and 160 pC, 100 MeV bunches, at n_, =7
x 10’8 cm3 and n_ = 2 x 10" cm3, respectively.

= Estimated e-bunch length in these experiments — few femtoseconds

= Peak current should be multi-kilo-Amperes (~ 20 kA for 5 fs 100 pC).

= Emittance was estimated to be of the order of ¢ ~ 1 ® mm mrad.

= [he energy spread ~ 1 — 3 % suitable for FEL applications with more
work on emittance and energy spread (need to get to 0.5% for FEL and
linear collider stage)

= 6.5 MeV 100 fs photoinjector (BNL/Eindhoven/LAL gun)

Strathclyde Electron and ERICE 2005
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Transport of flat and curved

femtosecond bunches: buncher
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Strathclyde
Tirapping and acceleration
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example: Lt (z-vt)

* 4 MeV beam in 3.5 x 107 cm3 plasma

 Laser pulse acts as filter, rejecting electrons outside spot size

* Initial bunch spot size can be larger than laser spot size (i.e. if we accept losses)

» Contrast with conventional injection requires small bunch spot to avoid energy spread
» Accelerated bunch has low transverse emittance

BT Yo Strathclyde Electron and ERICE 2005
Terahertz to Optical Pulse Source
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Undulator: compact synchrofiron
source and free-electron laser

- Slotted pole focussing undulator (Daresbury)  Strathclyde/Daresbury
200 period

« Undulator period 1.5 cm
* Minimum gap 5 mm

* Undulator parameter a, ~ 1

electron
gun accelerator
Strathclyde Electron and ERICE 2005
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Compact synchrotron source

= Undulator radiation emitted into cone Hzl

2

2
= Wavelength: 1= 2’1“ (1+a?“+7/2¢92); ‘and Af . =

__eé&l

= Normalised undulator potential a
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ALPHA-X synchrofiron source

= Radiation wavelength: 0.2 nm (1 GeV beam)

= Pulse length depends on Ay/y ( ~ 2% measured)
and electron bunch duration

= |ldeal AMA=1/2N, = 0.5%
= |deal pulse length: sub-femtosecond (point charge)
= Synchrotron radiation pulse length ~ 10 fs

Strathclyde Electron and ERICE 2005
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Energy spread and emititance

= Non-ideal electron beams degrade radiation properties:

reduces brilliance and lowers FEL gain
= Emittance: area in transverse phase space
/
Exy ROy Oy
= Approx. beam size times RMS beam divergence

= Normalised emittance: ¢, = s needs to be = 1 7mm
mrad

= Energy spread: % needs to be < p<0.5%

Strathclyde Electron and ERICE 2005
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Free-electron laser driven by
wakefield accelerator

Combination of undulator and radiation fields produces
ponderomotive force which bunches electron on a wavelength
scale

Laser field grows exponentially at a rate governed by
Matched electron beam: p=1.1 y 1B, /1u4/3|pk1/3 P
Gainlength | _ 4

Need oy/y<p and ¢,<4AByp/A, or &,<yA (matched)

See Bonifacio et al. (Nuova Cimento 1990, 1992)

Strathclyde Electron and ERICE 2005
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Free-electron laser

Ultimate goal of technology: 1~ 1.5 nm x-ray FEL requiring ~1 GeV

» Growth of an injected or spontaneous field in a FEL amplifier is given by

| =1, exp(92),

* g = 47p3?/4, — small signal gain,

* p - FEL gain parameter - a function of the beam energy, current and emittance.
* & = y o Qis the normalised emittance of the beam.

* o~ 0.001 to 0.02 for our expected electron beam parameters but need energy
spread 0y /y<2pi.e.0.2—- 4%

gain length < 10 4,
‘Makes sense to optimise gain, if possible

EXAMPLE: ALPHA-X: 4 nm source assuming a 1 GeV beam with 100 pC
charge and a duration of 10 fs we get a peak current of 10 kA. With a 1.5 cm
period undulator with a field of B field of 1 T we get a p =0.005, which gives a gain
length of 102, and a constraint on the energy spread of = 1%, which may be
achievable. To achieve saturation we need about 100 — 200 undulator periods.

Strathclyde Electron and ERICE 2005
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Conclusion

~emiosecond compact radiation sources feasible
Compact synchrotron

Compact FEL

Large tuning range THz to x-ray (water window)
Challenges: emittance, peak current, energy Spread

More challenges: synchronism, shot to shot jitter, bunch
duration

Outlook good with a lot of work — need a roadmap

Linear collider application far away. Need to develop laser
technology and schemes for staging

Strathclyde Electron and ERICE 2005
Terahertz to Optical Pulse Source




ALPHA-X



