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Non-Linear Behavior in Smith-Purcell
Radiation ?        (J. Urata et al., PRL 80 (1998) 516-519)
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SEM-Based Smith-Purcell Radiator

β= 0.35 (35 keV)

Ι    1 mΑ

λg = 173 µm, d = 100 mm,
w = 62 µm,

b = 10 µm, L = 12.7 mm

≤
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SEM-Based Smith-Purcell Radiator at the U of C,
After the Dartmouth Set-Up (O. Kapp, A. Crewe, KJK)
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Heated Specimen Stage  and  Possible
Black Body radiation background
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*S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)

Waves on a Grating: Propagating and
Evanescent Modes
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Sheet Current

Consider a sheet electron beam having current density*
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*K.-J. Kim and S. B. Song, Nucl. Instrum. Methods Phys. Res. A 475, 158 (2001).
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EM Fields Induced by a Sheet Current

Solving the Maxwell equations with proper symmetry, we get
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These are slow plane waves, propagating along z-axis with speed v, but
decaying along x-axis with decay constant Γ0. These are non-radiating,
zeroth order evanescent wave.
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E- Field, Energy Modulation, and Bunching;
Three-Fold Way for FELs

 Ez-Field gives rise to energy modulation

 Energy modulation gives rise to bunching

 Bunching gives rise to surface mode

 Quadratic equation for growth rate if e00 is a smooth function*

 However, e00 is singular !

       *K.-J. Kim and S. B. Song, Nucl. Instrum. Methods Phys. Res. A 475, 158 (2001).
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Singularity in e00 and Freely Propagating
Surface Mode

• The reflection coefficient e00 diverges at
λ=690 m.

• Freely propagating surface mode at this λ.

• For a non-zero growth rate (µ) it has a
simple pole
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Thus we recover cubic equation !
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Surface Mode at λ=690 m

 Scattering coefficients from mth to nth spatial modes

 There is a singularity in e00, indicating that a free-propagating surface
mode

 Due to linear relation between different emn, em0 are in general singular

 The mth spatial waves combine to satisfy the grating BC

 A surface mode of a perfectly conducting grating does not couple to
any propagating modes…If it did, the singularity cannot be infinitely
narrow.
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Surface Mode Has Negative Group
Velocity*

 Phase velocity =ω/kz=βc

,
ν dω/dkz < 0

ν Thus SP-FEL is a Backward Wave Oscillator (BWO)

ν Optical energy accumulates exponentially to saturation
without feedback mirrors

*H.L. Andrews et al., Phys. Rev. ST Accel. Beams. 8, 050703 (2005)
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Including Time Dependence via

∂∂±∂∂⇒ // vtµ

Time-dependent Maxwell equation:
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Lorentz equation:
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*First obtained for microwave circuit by N. S. Ginzburg et al., Sov. Radiophys. Electron., 21, 728
(1979), See also B. Levush et al., IEEE Trans. Plasma Sci., 20, 263 (1992).
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Maxwell-Lorentz Equations

Dimensionless variables:
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Maxwell-Lorentz equations in
dimensionless variables:

Boundary conditions:
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should be known for all τ
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Boundary Conditions for a BWO
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•No bunching at the entrance of the grating:
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•Oscillation starts when field at the exit vanishes
relative to the field at the entrance:

•No energy modulation at the entrance
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Analytic Solution in the Linear Regime
                                                     J.A. Swegle, Phys. Fluids 30, 1201 (1987)
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•Solution of the form exp(ντ)exp(ηζ)

•General solution:
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•Boundary conditions

   B = 0, P = 0  at ζ = 0, E = 0   at ζ = 1
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Analytic Solution in the Linear Regime (cont’d)

• Nontrivial solution if

•   This is a transcendental equation on ν. Find that there is a threshold value
     of J above which ν has a positive real part.

⇒ Start current condition
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Simulation Results:
Start Current and Saturation

For I/Δy = 50 A/m, at saturation, P/Δy = 13.7 mW/µm 

Power e-folding time  = 0.2 ns (simulation)

      0.17 ns (analytic formula)

Lasing wavelength = 694.5 µm (simulation)

  694 µm (analytic formula)

I/Δy = 50 A/m

I/Δy = 36 A/m

After saturation

@ z = 0 Energy conversion efficiency = 0.8%
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Simulation Results:
Start Current as a Function of Gap Distance

For b = 10 µm,

Ist/Δy = 37.5 A/m (simulation)

         = 36 A/m (analytic formula)

• If we maintain an rms average
beam radius of 10 µm over the
entire interaction regime, the
start surface current density is
37.5 A/m
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Simulation results

Evolution of longitudinal phase space

Electron beam becomes bunched due to SP-FEL interaction
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Outcoupling
 Maximum efficiency

 Outcoupling via

– Mode conversion at entrance

– Bunched beam radiation at exit
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Smith-Purcell FEL is a Backward Wave
Oscillator

e-beam
surface mode
(evanescent)

group velocity

e-beam and phase velocity
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Reference case:

λg = 173 µm, β = 0.35 (35 keV)

d = 100 µm, w = 62 µm, 

b = 10 µm, L = 12.7 mm

λ
g

L

φ

w

y
x

z

2a

h

d

E-Beam and Grating Parameters
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Beam Design for SP-FELs

 For clarity, assume KV distribution

σx = a/2

σy = b/2

 Choose β* = L at the grating center (beam size variation is small)

 For a good overlap of evanescent wave with e-beam

 Diffraction condition in y-direction

 These conditions are satisfied by sheet beam (a << b).  Thus the theory for
sheet beam developed in the above can be used for practical SP-FEL design
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Beam Design Examples
 Start current condition

 For Dartmouth parameter the coupling parameter  _ = 10/cm

 (Case A) A set of beam parameters satisfying these conditions
a = 20 µ,  b = 500 µ,   εx = 0.8 × 10-8 m-r, εy = 5 × 10-6 m-r, Is = 65 mA

ν Condition that space change force  is less than the emittance force in the beam
envelope equation:

ν Case A violates the space change condition by a factor of 5.
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Phase Velocity, Group Velocity, and Diffraction

 A wave evanescent in the x-direction and diffracting in y, with waist σy at
z=0:

 This satisfies free space wave equation if k2=kz
2-Γ2

 The phase velocity and diffraction property are determined by the operating
value of k and kz.  For example, the diffraction angle σy’=1/2kzσy , the phase
front curvature R=(z2+ZR

2)/z, etc.

 The group velocity, including its sign, is determined by how kz changes as a
function of k near the operating point.

 For example let Γ=gk(1-αk), thus                                   .  The group velocity
is negative if αk=3/4.
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Beam Designs Satisfying Also the Condition That
Space Charge Emittance Growth Is Small

 (Case B) Increase the depth of groove d:100_ 150 µ.

⇒ _ increases from 10 to 100 /cm ⇒ Is reduced by a factor of 10.
The wavelength increases also, but only by about 10%.

 (Case C) Increase L:1.25 _ 5 cm.
a = 20 µ, b = 200, εx = 2.0 × 10-9 m-r

εy = 1.25 × 10-6 m-r, Is = 0.36 mA
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Conclusions

• We have developed a theory of SP-FELs driven by sheet beams operating as
a BWO, using Maxwell-Lorentz equations.

• Simple formula for start current is derived from linear analysis .

• Results from a simulation code based on Maxwell-Lorentz equations agree
with linear theory where applicable and give saturation behavior.

• The sheet beam theory can be used for designing  a portable SP FEL for
THz radiation.


