

PITZ – layout and expected beam

- 1.3 GHz gun cavity
- Focusing solenoids
- Installed booster cavity will increase the energy of the beam to 30 MeV
- The emittance is expected to improve to less than 1 π.mm.mrad

Slit base technique

- Slit technique is used
- The image of the slit is observed with CCD on a distance *L* downstream

Space charge

See Anderson et al. "Space charge effects in high brightness electron beams - Phys. Rev 2002"

Slit width – space charge

Slit opening as a function of the beam size at 30 MeV, the emittance is fixed at 1 π .mm.mrad

GEANT4 simulations - input

- Simplified model is used to estimate
 - The signal to noise ratio
 - The energy deposited in the tungsten
- The plate thicknes, the distance to the screen and the slit opening were used as variables

Reference beam

Results – GEANT4

Results - signal to noise ratio

$$S2N = \frac{C_s}{C_n} \cdot \frac{A_n}{A_s}$$
 Here:
 $C_s - counts$
 $C_n - counts$

 C_n – counts noise A_s – area of the signal A_n – area of the noise

signal

Summary - EMSY

- Optimal slit opening is estimated to be 10 µm
- The optimal drift length and mask thickness is > 1.5 m.
- The production of the EMSY2 stations has started at High Energy Physics – Hi – Tech Group (INRNE HEPHIT GROUP) immediately after the funds receival
- EMSY stations are under construction. All EMSY's mechanical components were done until 4^{-th} of April
- Full assembling of EMSY including all NEWPORT stages and software has started from 4^{-th} of October at PITZ Zeuthen

Emittance measurement Slit based technique

- Slit based technique, direct measurement of the area/volume sheared area
- The image of the slit is observed with CCD on a distance *L* downstream

Emittance measurement Sources of error

+ $\beta\gamma$ – uncertainty of the momentum measurement is estimated to be ~50 keV

• beam size - statistical error and systematics:

! calibration factor of the optics

! screen/camera saturation

! finite CCD resolution (!!!)

• beamlet size – all the same as for the beam size plus the uncertainty in the drift distance

Emittance measurement slit positioning

- direct measurement of the area occupied by the phase space
- which position of the slit is best describing the equivalent ellipse?

Emittance measurement slit positioning

- beam dynamics with ASTRA
- results used to simulate the measurements
- direct measurement of the area occupied by the phase space
- which position of the slit is best describing the equivalent ellipse?
- 1 μm precision in the scan
 (10 μm slit width)

