WAKEFIELD UNDULATOR RADIATION

A. Opanasenko

NSC KIPT, UKRAINE

- •MECHANISM OF WFU RADIATION
- •SPECTRAL -ANGULAR CHARACTERISTICS
- •MODEL OF WF UNDULATOR
- WAKEFIELD DISTRIBUTION
- · HARD X-RAY GENERATING
- POSSIBILITY of EXPERIMENTAL STUDY

MECHANISM OF WFU RADIATION

Wakefields (Coherent Parametric-Cherenkov-Radiation)

$$\omega(h) - h v_0 = n \frac{2\pi v_0}{D}$$

<u>*Wake force*</u> in form of Floquet's series

Alternating transverse wake force $(p \neq 0)$ can give rise to undulating the particles with <u>transverse velocity</u>

Method

Self-wake force **Eigenfunctions** free space range Zeroth order approximation $\mathbf{v} = \mathbf{v}_0 = \mathbf{v}_0 \mathbf{e}_z, \quad \mathbf{r}(t) = \mathbf{r}_{0\perp} + \mathbf{v}_0 t$ ω $\omega_{\lambda} << \omega_{cut off} \qquad \mathbf{F}(t) = \begin{cases} 0 \\ -e^2 \sum_{p=-\infty}^{\infty} w^{(p)} e^{ip\Omega t} + e^{ip\Omega t} \end{cases}$ $\omega_{cut off}$ diffraction range the pth harmonic of wakefunction $\boldsymbol{w}^{(p)} = \frac{D\mathbf{v}_{0}}{4c^{2}V_{cell}} \sum_{n=0}^{\infty} \sum_{\lambda'_{j}} \frac{\boldsymbol{g}_{z,\lambda_{j}}^{(n)*}}{\left|\mathbf{v}_{0} - \frac{d\omega_{\lambda}}{dh}\right|_{\lambda=\lambda_{j}}} \left[\boldsymbol{g}_{z,\lambda'_{j}}^{(n+p)} - i\frac{\mathbf{v}_{0}}{\omega_{\lambda}} \nabla_{\perp} \boldsymbol{g}_{z,\lambda_{j}}^{(n+p)} - \frac{\Omega p}{\omega_{\lambda}} \boldsymbol{g}_{\perp,\lambda_{j}}^{(n+p)}\right]$ $h_{n,k}$

6

The first order approximation

Radiation power

$$P = -\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \mathbf{v}(t') \mathbf{F}(\mathbf{v}(t'), \mathbf{r}(t'), t') dt'$$

$$= \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} dt \frac{e^{2}}{4c^{2}V_{tot}} \sum_{\lambda}^{\omega_{\lambda} < c/r_{0}} \mathbf{v}(t) \mathbf{A}_{\lambda}(\mathbf{r}(t)) \left\{ e^{i\omega_{\lambda}t} \int_{0}^{t} \mathbf{v}(t') \mathbf{A}_{\lambda}^{*}(\mathbf{r}(t')) e^{-i\omega_{\lambda}t'} dt' + e^{-i\omega_{\lambda}t} \int_{0}^{t} \mathbf{v}(t') \mathbf{A}_{\lambda}^{*}(\mathbf{r}(t')) e^{i\omega_{\lambda}t'} dt' \right\} + c.\tilde{n}.$$

Radiation power in the first order approximation

8

WFUR SPECTRAL - ANGULAR CHARACTERISTICS

Single-Particle Radiation

The <u>spectral-angular power density</u> of hard UR emitted spontaneously by a single particle of the bunch

))	 	

Here $d\Omega = sin\theta d\theta d\phi$

WFUR SPECTRAL - ANGULAR CHARACTERISTICS

Single-Particle Radiation

<u>Resonant frequencies</u> of the WFUR _th harmonics

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	 	· · · · · · · · · · · · · · · · · · ·

The <u>spectral-angular photon flux density</u> of the _th

harmonics in the forward direction

FORMULAS FOR QUANTITATIVE ESTIMATIONS WF characteristics of weakly corrugated waveguide

AXIALLY SYMMETRICAL MODEL OF WAKEFIELD UNDULATOR 13

The WFU and electron bunch parameters for producing 792 keV photons

Period	D	300 µm	Energy of electrons)	5 GeV
Average radius	b ₀	300 µm	Bunch length	σ_{z}		30,300 µm
Relative amplitude of corrugations	Δ	30 µm	Bunch distance from axis)	260 µm
Number of periods	N _u	1000	Average beam current		Ι	100 mA

The beam parameters are typical for conceptual projects of synchrotron X-ray sources based on Energy ERL.

WAKEFIELD DISTRIBUTION INDUCED BY UNIFORM CHARGED BUNCH

The relative energy losses per bunch charge along the bunch

30 μ m bunch length

300 µm bunch length

The distributions of the undulator parameter K per bunch charge

HARD X-RAY GENERATING

The 0.8 MeV photon flux density v.s. bunch charge.

WF UNDULATOR AS ULTRA-FAST X-RAY SOURSE

FORMULAS FOR QUANTITATIVE ESTIMATIONS

WFU radiation

Spectral flux (photons/s) into a small $\Delta \omega$ of the _th harmonics

FORMULAS FOR QUANTITATIVE ESTIMATIONS

WF undulator parameter

RADIATION BY A HIGH_ENERGY ELECTRON BUNCH Under-estimation of photon flux

DLW	mode	D (mm)	d(mm)	<i>a</i> (mm)	<i>b</i> (mm)	<i>L</i> (m)
STRUM-90	4π/3	71.45	67.45	15	41.2	1.7
SLAC-type	2π/3	35.99	30.15	13.1-9.6	41.7-	3.05

Upper-estimation of transverse emittance

RADIATION BY A LOW ENERGY ELECTRON BUNCH Under-estimation of photon flux

TU/e Photo-injector

Energy:	10 MeV
Peak Current:	1 kA
Emittance:	1 mm mrad
Length:	100 fs
Charge:	100 pC

RADIATION BY A LOW ENERGY ELECTRON BUNCH Under-estimation of photon flux

Optimization

The optimal dimensions of a S-band waveguide

mode	D	d	a	b
	mm	mm	mm	mm
4π/3	71.45	39.5	20	41.2

The optimal dimensions of a S-band waveguide

Reduction ratio, <i>n</i>	D' mm	d' mm	a' mm	b' mm
150	0.48	0.26	0.13	0.28
180	0.4	0.22	0.11	0.23
200	0.37	0.2	0.1	0.2

RADIATION BY A LOW ENERGY ELECTRON BUNCH Under-estimation of photon flux

Charge of a bunch (nC)

Scaling - n=200

Scaling - n=150

Upper-estimation of transverse emittance

Reduction ratio, <i>n</i>	D' mm	d' mm	a' mm	<i>b'</i> mm
150	0.48	0.26	0.13	0.28
180	0.4	0.22	0.11	0.23
200	0.37	0.2	0.1	0.2

RADIATION BY A LOW ENERGY ELECTRON BUNCH WFU radiation from weakly corrugated waveguide

Waveguide

Period	D	0.4 mm
Average radius	\boldsymbol{b}_{θ}	0.1 mm
Amplitude of corrugations	$\boldsymbol{\varepsilon}_1$	0.065
Number of periods	N _u	30
Beam		
Energy	W _e	10 MeV
Duration	Δau	100 fs
Distance from axis	r _b	75 μm

RADIATION BY A LOW ENERGY ELECTRON BUNCH WFU radiation from weakly corrugated waveguide

CONCLUSION

1. For experimental study WFU radiation ~ 10⁴ – 10⁵ ph/sec in S-band structures, the electron beams are required with the parameters :

bunch charge ~ 10 nC, electron energy \geq 100 _eV beam radius ~ 1 mm normalized emittance (for 3 m sections) \leq 150 µm

SLAC

-12 nC

2. For observation WFU radiation 10^2 ph/bunch with TU/e Photo-injector, It is required the parameters sub-mm corrugated waveguide with period ~ 0.3 - 0.6 mm transverse sizes ~ 0.1-0.2 mm beam radius ~ 1 mm normalized emittance ~ 1 μ m radius beam ~ 8 μ m 3. For experimental study WFU radiation ~ 10⁴ – 10⁵ ph/sec by short pulsed beams in S-band structures (2π/3, 4π/3)

the electron beams are required with duration $\approx 1 - 80$ ns charge of pulse ≥ 10 nC, electron energy $\geq 100 \text{ eV}$ beam radius $\approx 1 \text{ mm}$ normalized emittance (for 3 m sections) $\leq 150 \text{ }\mu\text{m}$