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Inverse Compton processInverse Compton process
 Collision of relativistic electron beam bunch with intense laser pulse
 Scattered light is ~monochromatic, Doppler shifted to v. short

wavelength
 Cost is moderate compared to competing techniques
 Difficulty is high, but now w/in state-of-art
 Applications: diverse…
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ICS applicationsICS applications

 Ultra-fast materials characterization
 Original context
 Laser-intensive community
 High-end X-ray users

 High energy physics
 Very high energy photons (γγ collider, polarized positrons)

 Biology and medicine
 Reliable customers for X-rays
 Potential breakthroughs in diagnosis and therapy
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Shock physicsShock physics
 Ultra-fast, high energy density physics
 Fundamental material studies for

 Inertial confinement fusion
 Nuclear stockpile stewardship

 Pump-probe systems with high power lasers
 EXAFS, Bragg, radiography in fsec time-scale
 Ultra-fast gives higher laser intensity…
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Medical uses: Monochromatic
cancer therapy
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K-edge (~30 keV in iodine)

Simple idea; needs high average flux.



Medical applications:
Dichromatic imaging
Medical applications:
Dichromatic imaging

 Illuminate above and below
contrast K-edge

 Digital image subtraction
 Established at synchrotrons

 Access limited
 Expensive ($100M’s)

 Mitigate risk of angiography
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Conventional angiogram Digital subtraction angiogram 
(same patient, same day)

Accelerator



Medical applications:
mammography

Medical applications:
mammography

  

Conventional X-ray
imaging difficult in
mammography
Soft-tissue contrast poor

Monochromatic X-rays
can enable new
techniques
Phase contrast imaging
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Monochromatic X-rays
can enable new
techniques
Phase contrast imaging

Mammography images of adenocarcinoma. (a) conventional
mammogram; (b) monochromatic beam at 22.2 keV;         (c)
phase contrast image based on monochromatic X-ray beam;
(d) histological section.



How many photons?How many photons?

 Medical applications demand
 large numbers of photons
 Narrow bandwidth

 Example: NIH pre-solicitation
(left)

 Similar numbers for other
state-of-art ICS projects

 Are these parameters possible?
 Discuss using simple model of

ICS
 Very similar to sophisticated

computations
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ICS basicsICS basics

We consider nearly head-on collision
Ignore electron beam divergence in this talk
Work in “Thomson” limit; also quasi-linear
Look at spectral broadening mechanisms

Relate to laser intensity/photon production
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Why are we allowed to ignore
the electron beam divergence?
Why are we allowed to ignore
the electron beam divergence?

 Anecdote: even with very
bad final emittance at
PLEIADES, the e-beam was
smaller at the IP than the
laser!

 The laser “emittance” is
usually much bigger than
the e-beam
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Final focus e-beam

Image on cube

Falcon laser
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Analysis begins in electron
rest frame

Analysis begins in electron
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Lorentz transformation of ω-k 4-vector

Blue-shifted rest frame photon will
scatter with negligible recoil (Thomson
limit of Compton scattering), if
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Thomson scattering in
electron rest frame

Thomson scattering in
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In Thomson limit, ω is independent of
emission direction in rest frame θ’

Wave-vector components

Note: Power profile in linear limit is also
derived from Thomson

The total Thomson cross-section is Lorentz
invariant
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Back to the lab frameBack to the lab frame

Final frequency:
Wave-vector components:
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Small angle spectrumSmall angle spectrum

Approximate small angle spectrum

Final angle-induced red shift familiar from FEL
Resonance: when emitted wave-front overtakes

electron by λr in λU (~λL/2. Thomson)

Relative red shift always ~
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Angular “efficiency”Angular “efficiency”

Small bandwidth means small angles
accepted into aperture
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Red shift from (small) nonlinear
effects

Red shift from (small) nonlinear
effects

Electron has angle in motion due to
laser field

Relative red shift
Result OK for small aL only

Figure-8 motion
Harmonics…

RMS BW (gaussian beams)
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Finite pulse length and focal effectsFinite pulse length and focal effects

Fourier spread in the
laser pulse from finite
length

Bandwidth smaller for
longer pulse

Practical pulse length
limited by Rayleigh
range
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Inherent angular spread in photons…Inherent angular spread in photons…

Away from the focus,
laser phase fronts have
angle, with rms spread

In focus, phase fronts
flatten, but Guoy phase
shift changes local kz

RMS spread same…
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Photon production and luminosityPhoton production and luminosity

Total scattered photons per pulse:

  “Luminosity” per pulse:
Independent of σz; make beam as  long

as possible to mitigate FT BW:
Under this assumption, angular BW

nearly the same as the Fourier
transform BW!
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Calculate luminosityCalculate luminosity

 Luminosity per assumption:
Look at laser pulse energy density

Pulse intensity and field values…

Put in  terms of maximum vector potential to
relate to NL effects
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Maximum laser energyMaximum laser energy

Laser energy

Maximum in terms of  aL,max (BW…)

Relate to luminosity…
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Maximum photon productionMaximum photon production

Luminosity

Photons per pulse

Number within design angular
acceptance (BW)
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Relation of photon production
to bandwidth(s)
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We can cast the photon number in
terms of all of the relevant bandwidths

Note: laser energy scales as
If NL and angular BW are chosen ~1%,

and focus/FT BW is ~1E-4
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How do you design laser?How do you design laser?

Choose a laser wavelength
Because of limits on NL motion

Specify the “focus” bandwidth
Now you know the beam dimensions

Specify nonlinear BW
Now you know the laser pulse energy

Specify angular acceptance for desired BW
In terms of BWs
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A 1% RMS BW ExampleA 1% RMS BW Example

Laser wavelength: 800 nm
Focus BW: 1.5E-4, means

Strain electron focus at moderate energy…

NL (+ angular) bandwidth: 1%
Looks familiar!
For these choices
Then… Nγ=3x109/nC, with good emittance
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