Theory of Quantum FEL and the QFEL Project

Rodolfo Bonifacio

INFN-MI, Milano, Italy and Departamento de Fisica, Universidade Federal de Alagoas, Maceiò, Brazil

Nicola Piovella,

INFN-MI, Milano, Italy and Dipartimento di Fisica, Università di Milano, Milano, Italy Gordon R. M. Robb

Physics Department, University of Strathclyde, Glasgow, Scotland.

> Fully quantized model

- Linear quantum theory and SS instability (wrong and correct)
- > (Photon statistics and entanglement)
- > Fundamental limitation for bunching and energy spread
- > Theory of Quantum SASE
- >The QFEL Project

Some references

HIGH-GAIN AND SASE FEL with "UNIVERSAL SCALING" Classical Theory

(1) R.B, C. Pellegrini and L. Narducci, Opt. Commun. 50, 373 (1984).

- (2) R.B, B.W. McNeil, and P. Pierini PRA 40, 4467 (1989)
- (3) R.B, L. De Salvo, P.Pierini, N.Piovella, C. Pellegrini, PRL 73, 70 (1994).
- (4, 5) R.B. et al, Physics of High Gain FEL and Superradiance, La Rivista

del Nuovo Cimento vol. 13. n. 9 (1990) e vol. 15 n.11 (1992)

QUANTUM THEORY

- (6) R. B., N. Piovella, G.R.M.Robb, and M.M.Cola, Europhysics Letters, 69, (2005) 55.
- (7) R.B., N. Piovella, G.R.M. Robb, Quantum Theory of SASE-FEL, NIM A 543, 645 (2005)
- (8) R. B., N. Piovella, G.R.M.Robb, and M.M.Cola, Optics Commun. 252, 381 (2005)

See also

(9) F.T.Arecchi, R. Bonifacio, "MB equation", IEEE Quantum Electron., 1 (1965) 169

(*) Schroeder, Pellegrini, Chen, (SPC) PRE, 64, 56502 (2001)

Incorrect ordering gives incorrect results

Incorrect ordering \rightarrow incorrect cubic

(*) Schroeder, Pellegrini, Chen, (SPC) PRE, 64, 56502 (2001)

As if classical rect. dist.

(*) Carruthers and Nieto, Rev. Mod. Phys. 40, 4411 (1968)

Two Level System (QFEL regime) Let the Hilbert space to be spanned only by 2 eigenstates of the discrete momentum separated by Let the state of the system to be a superposition of these states with probability P_1 and P_2 such that $P_1 + P_2 = 1$. It is trivial to show that

\/ -<u>r</u> - - - - -

All the numerical simulations are in agreement with the above quantum limitation (max bunching = 0.5 independently on $'^-$).

/

 $\langle \rangle$

 $\sqrt{}$

 $\overline{}$

Results from quantum linear theory (Quantum fluctuation and entanglement in CARL, PRA, 67, 01387 (2003), N. Piovella, M. Cola and R.B.) $\langle \rangle$ $\langle \rangle$ $\langle \rangle - \sqrt{\langle} \langle \rangle - \sqrt{\langle} \rangle - \sqrt{\langle} \rangle$ $\langle \rangle - \sqrt{\langle \rangle} - \langle \rangle - \langle \rangle - \langle \rangle$ ----- $| | \frac{\langle \rangle}{\langle \rangle} | | \frac{\langle \rangle}{\langle \rangle} \langle \rangle \langle \rangle \langle \rangle$

 $\frac{\langle \rangle}{\langle \rangle} \quad \frac{\langle \rangle}{\langle \rangle} \quad | \rangle \langle |$

STEADY STATE AND SUPERRADIANT INSTABILITY, Long and Short Bunch (uniform seed)

Evolution of radiation time structure in the electron rest frame

Classical SASE

Ingredients:

- i) Start up from noise
- ii) Propagation effects (slippage)
- iii) Superradiant instability: (no steady state instability) Self Amplified Superradiant Emission (RB, L. De Salvo, P.Pierini, N.Piovella, C. Pellegrini, PRL 73 (1994) 70)

↓

The electron bunch behaves as if each cooperation length would radiate independently a weak SR spike which gets amplified propagating on the other electrons with no saturation. Spiky time structure and spectrum.

 $\overline{\mathbf{z}}$

CLASSICAL SASE reprinted from PRL 73 (1994) 70

\/······

Time structure:

Almost chaotic behavior:

number of random spikes goes like

Spectrum:

is just the envelope of a series of narrow random spikes

If a single SR spike.

At short wavelengths => many random spikes.

Total energy does not saturate (at 1.4).

; Q. F. T. by G. Preparata[†] (Phys. Rev. A, 38 (1988), 233)

Derived from Q-field theory by G. Preparata (Phys. Rev. A, 38 (1988), 233)

Classical Limit:

One can prove that the Schroedinger equation for the QFEL model reduces to the classical Vlasov Equation for the Quantum Wigner function in the limit:

In the classical limit, with universal scaling, no dependence on

> R. B., N. Piovella, G.R.M. Robb, NIM A 543 (2005) 645

Classical Vlasov Equation

R. B., N. Piovella, G.R.M. Robb, NIM A 543 (2005) 645

The Discrete frequencies as in a cavity

Quantum limit : discrete resonance as in a cavity

Evolution of radiation time structure in the electron rest frame

Simulation using QFEL model: Momentum distribution (average) Quantum regime Classical regime

Classical behaviour : both n<0 and n>0 occupied Quantum behaviour : sequential SR decay, only n<0

1-

1

- -

Conclusions

- Classical description of SASE valid IF
- IF \checkmark one has quantum SASE: the gain bandwidth decreases as $\sqrt{-}$ and $\sqrt{-}$ \checkmark line narrowing, temporal coherence.
- Multiple lines Spectrum:
 - separation $\sqrt{-}$, linewidth $\sqrt{-}$
- Classical limit: increasing ' separation linewidth → continuous spiky classical spectrum.

For experimental setup see R.B., NIM A 546 (2005) 634, and proceedings FEL conf 2005

Quantum Free Electron Laser QFEL

R. Bonifacio^{*}, M.M. Cola⁺, **N. Piovella**⁺, L. Serafini,L. Volpe⁺ INFN-Milano

D. Babusci, M. Benfatto, S. Di Matteo, M. Ferrario,
 C. Natoli, L. Palumbo, A. Schiavi[^], A. Tenore
 INFN-LNF

U. De Angelis, S. De Nicola, R. Fedele, G. Fiore INFN-Napoli

G.R.M. Robb, B.W.J. Mc Neil, University of Strathclyde, Glasgow, UK

V. Shchesnovich **Universidade Federal de Alagoas, Maceio, Brazil**

* Physics Dep. of Universidade Federal de Alagoas, Maceio', Brazil
+ Dipartimento di Fisica, Universita' degli Studi di Milano
^ Dipartimento di Energetica, Universita' di Roma "La Sapienza"

Evolution of radiation time structure in the electron rest frame

Classical regime

Classical behaviour : both n<0 and n>0 occupied Quantum behaviour : sequential SR decay, only n<0

1-

1

- -

Experimental Evidence of Quantum Dynamics – The LENS Experiment

- Production of an elongated ⁸⁷Rb BEC in a magnetic trap
- Laser pulse during first expansion of the condensate

Absorption imaging of the momentum components of the cloud

R. B., F.S. Cataliotti, M.M. Cola, L. Fallani, C. Fort, N. Piovella, M. Inguscio J. Mod. Opt. **51**, 785 (2004) and Optics Comm. **233**, 155(2004) and Phys. Rev. A 71, 033612 (2005)

The experiment

Temporal evolution of the population in the first three atomic momentum states during the application of the light pulse.

Classical FEL SASE experiments (DESY, SLAC):

- GeV linac (Km) and long undulators (100 m)
- Radiation spectrum broad and chaotic (spikes)
- High cost (10⁹ U\$) and large dimensions

Quantum FEL SASE:

- quantum purification (monocromatic spectrum)
- must use a laser undulator
- reduced cost (10⁶ U\$) and compact devise (m)

Ingredients of QFEL Project:

- electron beam 15-100 MeV, 100 A , $\varepsilon_n < 2 \text{ mm mrad}$
- Laser wiggler at 0.8 micron, 10-100 TW (Ti:Sa)

Both under development for SPARC/PLASMON_X

Preliminary parameters list for QFEL

E [J]

 $w_{o} \left[\mu m \right]$

 Z_{r} [µm]

Electron beam

E [MeV]	20
I [A]	40
ε _n [μm]	1
δγ/γ [%]	0.03
β* [mm]	0.5-1

Laser	beam
$\lambda [\mu m]$	0.8
P [TW]	1

4

5-10

80-300

QFEL beam

$\lambda_r[A]$	1.7
P _r [MW]	0.3

Preliminar studies are based on a 1D quantum model.

It is necessary to extend the analytical/numerical study of the 1D model to a 3D quantum model in order to demonstrate the feasibility of a Quantum SASE experiment at INFN-LNF

The Frascati Laser for Acceleration and Multidisciplinary Experiments

laser pulses: 50 fs, 800 nm >100 TW @10 Hz

Quantum limit : discrete resonances as in a cavity

Instability in the linear regime Q.M. $(\lambda - \delta) \left(\lambda^2 - \frac{1}{\overline{\rho}^2} \right) + 1 = 0$

Quantum Purification and Multiple line Spectrum

- Spectrum with multiple lines. When the width of each line becomes larger or equal to the line separation, continuous spectrum, i.e., classical limit. This happens when

The Wigner function for linear and momentum variable

Resonance condition in the quantistic FEL

2.7 4 10¹⁰ 1010 $\sqrt{}$

3

Emittance limitations

If radiation beam must contain e-beam:

_____If e-beam must contain radiation beam:

➢ Fully quantized model for CRL

Linear quantum theory and SS instability:
Photon statistics and entanglement

> Uncertainty relation for p and θ with periodic boundary conditions (wrong and correct)

Fundamental limitation for bunching and energy spread

> Minimum Uncertainty State for p and θ

The usual Wigner function and the "rotational" Wigner function
Open problems

POSSIBLE EXPERIMENTAL PARAMETERS