Generation of energetic electrons from a laser plasma cathode and the future applications for pulse radiolysis, Thomson scattering X-ray generation, and electron microscopy

> K. Kinoshita, T. Hosokai, A. Zhidkov¹, T. Ohkubo, A. Maekawa, K. Kobayashi and M. Uesaka

Nuclear Professional School, School of Engineering, University of Tokyo

¹National Institute of Radiological Sciences JAPAN

The physics and Applications of High Brightness Electron Beams, Erice (Italy), 10th-14th Oct. 2005.

What is the laser plasma cathode.

Tera-watt laser + plasma + wave breaking → energetic electrons

- Femtosecond electron bunch < 100 fs
 Ultrashort laser pulse + high frequency of the plasma wave
- High accelerating gradient ~ 100 GV/m
- Moderate energy ~ 10s MeV within 1 mm acceleration length
- Jitter free
 - -- Multiple pulses divided from a single laser pulse
- Good emittance ~1 πmmmrad
 - -- Small laser spot and rapid acceleration

Apparatus for laser plasma cathode

Mono-energetic Electron Beams

Mono-energetic electron beams were accelerated by laser-plasma particle accelerators in 2004.

- Energy gains and electric charges were 7-15 MeV and 2- 3fC, respectively.
- The normalized emittance was approximately 0.7 π mm mrad.

2-staged acceleration for more improved electron beam

	Low density $(\sim 10^{17} \text{ cm}^{-3})$	High density $(\sim 10^{19-20} \text{cm}^{-3})$	 Requirements High Charge Uitrashort High Energy
Dephaseing Length	~10cm	~100µm	How to overcome the contradictory?
Charge	few ~pC	huge ~nC	
Acc. Energy	High	Low	 High density gas jet
Plasma wavelength	~100fs	~10fs	for injector Low density with optical guiding for further acc.
Wake-fields	Regular	few cycles	
Optical guiding	Effective	???	

Through laser plasma cathode we will have; femtosecond electron beams from a compact accelerator, jitter-free system synchronized with a femtosecond laser pulse.

Various applications such as,

- Femtosecond pulse radiolysis for radiation chemistry
- Femtosecond X-ray generation through laser Thomson scattering
- Time-resolved electron microscope

Pulse radiolysis with a conventional LINAC

Ultra-fast pump-and-probe pulse radiolysis study : radiation induced fast processes

Time behaviors of hydrated electrons in water: Solvation time < time resolution < 10ps

Time behaviors of solvated electrons in ethanol: Observation of solvation process (e⁻_{pre} ? "e⁻_{sol})

Synchronization of laser and LINAC

A laser pulse divided into electron generation pulse and probe pulse

Laser Thomson scattering with laser plasma cathode

Spectrum of x-rays depending on the laser intensity, $a_0 = eE/mc\omega$

Laser pulse and electron bunch encounter can be produced with use of the laser self-focusing

F.He, Y.Lau, D. Umstadter, R.Kowalczyk PRL, 90,055002 (2003)

Laser Thomson scattering with laser plasma cathode

Moving through the laser pulse, a relativistic electron transforms the laser light to X-rays. The total number of photons produced by the electron is

Number of photons scattered by single electron:

Present parameters in experiment

 Wavelength ~800nm Pulse duration ~40fs Laser energy 600mJ/pulse (300mJ for drive pulse, 300mJ for colliding pulse) Spot size ~10µm in D

$$n = \sigma W / h \omega$$

 $n \sim 0.3$

2x10⁶ photons are scattered 10pC electron single bunch. $\sigma \sim \pi r_e^2 = \pi e^4 / (m_e c^2)^2$ σ : cross - section W: laser energy density

2x10⁷ photons/sec @10Hz

If we can avoid the diffraction effects due to pre-plasma, $> 100 \text{pC} / \text{bunch} = 2 \times 10^8 \text{ photons/sec } @10 \text{Hz}$

A Strawman Design of Laser-driven Microscope

- Ultra-short pulse of ≈10fs might be possible to accelerate electrons in the atmospheric pressure.
- Laser-plasma cathode technique will enable us to observe live specimen by the electron microscope.
- Pump-probe technique with fs-resolution will be possible.

Laser plasma cathode is a high quality electron source.

- Femtosecond electron bunch
- Jitter-free synchronization with a femtosecond laser pulse
- Compact

We will apply laser plasma cathode to femtosecond applications.

- Femtosecond pulse radiolysis
- Femtosecond X-ray generation via laser Thomson scattering
- Time-resolved electron microscope