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What is the laser plasma cathode.
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Characteristics of the laser plasma cathode

Femtosecond electron bunch  < 100 fs
  -- Ultrashort laser pulse + high frequency of the plasma wave

High accelerating gradient ~ 100 GV/m

Moderate energy ~ 10s MeV within 1 mm acceleration length

Jitter free
  -- Multiple pulses divided from a single laser pulse

Good emittance  ~ 1 πmmmrad
  -- Small laser spot and rapid acceleration

Gas jet

Electron beam
Femtosecond
tera watt laser pulse



Apparatus for laser plasma cathode

Nozzle
Tip 1.26mm

Tera watt laser system

Gas jetExperimental setup
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OAP f =177mm
Beam size D~50mm

F#~3.5
Spot size ~8.0 µm @1/e2

Rayleigh length ~53 µm

Power Density
for Main Pulse (~11TW)

~2.2x1019Wcm-2

a0~3.1

Contrast Ratio 1:5X10-7

2ns~1.0x1013Wcm-2

Power Density
for Pre-pulse

few ps~1.0x1016Wcm-2

Laser Parameters

Mono energetic electron beam from laser plasma cathode

Qasi mono energetic electron spectrum



Mono-energetic Electron Beams

Mono-energetic electron beams were accelerated
by laser-plasma particle accelerators in 2004.

• Energy gains and electric charges were  7-15 MeV and 2- 3fC, respectively.
• The normalized emittance was approximately 0.7 π mm mrad.

Mono-energetic beam acceleration is
limited in an narrow density range
for a fixed laser power
(ne≈1~1.5×1020cm-3 , PL= 2TW).

The Stokes satellite peak clearly
shows the self-modulated laser
wakefield.

Electron Energy
Spectrum

Forward scattering
Spectrum

Energy Gain vs. Electron

Density

K.KOYAMA (AIST), PAHBEB2005, Erice, Italy



Lowdensity
(~1017cm-3)

High density
(~1019-20cm-3)

Dephaseing
Length ~10cm ~100µm

Charge few huge

Plasma
wavelength ~100fs ~10fs

Wake-fields Regular fewcycles

Acc. Energy High Low

Optical
guiding Effective ???

~pC ~nC

How to overcome
the contradictory?

HighCharge
HighEnergy

Uitrashort

High densitygas jet
for injector

Lowdensitywith
optical guiding
for further acc.

Requirements

Wave-free
Slit Jet

Femtosecond
Injector

Ti:sapphire
Laser pulseVacuum

Plasma Channel
byCapillaryDC

fs, quasi-mono
energetic e-beam

~10TW
~20kV

Injector : Plasma Cathode

Further acc : Capillary DC

2staged Acc.

2-staged acceleration for more improved electron beam



Applications of laser plasma cathode

Femtosecond pulse radiolysis for radiation chemistry

Femtosecond X-ray generation through laser Thomson scattering

Time-resolved electron microscope

Through laser plasma cathode we will have;
  femtosecond electron beams from a compact accelerator,
  jitter-free system synchronized with a femtosecond laser pulse.

Various applications such as,



Ultra-fast pump-and-probe pulse radiolysis study : radiation induced fast processes

Laser photocathode
22MeV S-band
electron linac

CompressorFs Ti:Sapp laser

Combination!!

PUMP!PUMP!

PROBE!PROBE!

Sample

Compressor&THG
Chicane

Optical parametric amplifier
(533-2600nm)
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Time behaviors of hydrated electrons in water:
Solvation time < time resolution < 10ps

Time behaviors of solvated electrons in ethanol:
Observation of solvation process (e-

pre ?¨e-
sol )

2-3ps, ~2nC, 3mmφ

100fs, 533-2600nm

Pulse radiolysis with a conventional LINAC



Precise Synchronization System at UTNS www.utns.jp/~beam

Beam-Material Interactions

Laser photo-
cathode RF gun

 Accelerating Tube 
Chicane

BS
(50%)

RF

18L Linac
Compressor

x 6

Temperature control within 1 deg,  Clean room (class : 10,000)

 Stretcher  Regenerative Amplifier 
with Pulse Selector

 Ti:Sapphire Oscillator 
 with Kerr Lens
Mode-Locker  

 Timing Stabilizer 
at 9th Harmonics

 Diode Pump Laser 

Trigger Pulse

Compressor
THG 

 Multi-pass 
 Amplifier

Fs Ti:Sapphire Laser System

Klystron
15MW

x 4

Digitex

Master
Oscillator
119MHz

50Hz x 1/5

3DB

To Streak Camera
To Pulse Selector

Laser transport line

Cherenkov
Radiator

Fs Streak Camera

x 1/6

Synchronization of laser and LINAC



Pulse radiolysis with laser plasma cathode

Fs Ti:Sapp laser

PUMP!PUMP!

PROBE!PROBE!

Sample
gas jet

Very simple setup!

Jitter-free

Femtosecond pulses

Electron

Femtosecond resolution!

A laser pulse divided into electron generation pulse and probe pulse



Ti:sapphire
Laser pulse
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Optical
Delay

OAP

OAP

Gas Jet

X-ray

e-Bunch generation
Collision

50%

50%

Electron bunch
by PIC simulation

40fs

Spectrum of x-rays depending on the laser intensity, a0=eE/mcω
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Laser pulse and electron
bunch encounter can be
produced with use of
the laser self-focusing

Hard X-rays (~10-20 keV) in a 1-2o cone can be produced with 12TW Laser

F.He, Y.Lau, D. Umstadter, R.Kowalczyk
PRL, 90,055002 (2003)

A.Zhidkov, J.Koga, A.Sasaki, M.Uesaka
PRL, 88,185002 (2002)

Set up for head-on collision
Thomson scattering

Laser Thomson scattering with laser plasma cathode



Moving through the laser pulse, a relativistic electron transforms
the laser light to X-rays. The total number of photons produced by the electron is

Gas
jet

2nd pulse
Colliding Pulse

1st pulse
DrivePulse

Shockwave produced by prepulse

X-rays

Electron bunch, 40fs, 10pC, can be produced.

Number of photons scattered by single electron:

ωσ hWn /=
densityenergylaser:

section-cross:
)/(~ 2242

W

cmer ee

σ
ππσ =

n~0.3

2x106 photons are scattered
10pC electron single bunch.

If we can avoid the diffraction effects due to pre-plasma,

100pC / bunch

2x107 photons/sec @10Hz

2x108 photons/sec @10Hz

Present parameters
in experiment

Wavelength ~800nm
Pulse duration ~40fs
Laser energy 600mJ/pulse
(300mJ for drive pulse,
300mJ for colliding pulse)
Spot size ~10µm in D

Laser Thomson scattering with laser plasma cathode



A Strawman Design of Laser-driven Microscope

K.KOYAMA (AIST), PAHBEB2005, Erice, Italy

• Ultra-short pulse of ≈10fs might be possible to accelerate electrons in
the atmospheric pressure.

• Laser-plasma cathode technique will enable us to observe live
specimen by the electron microscope.

• Pump-probe technique with fs-resolution will be possible.

No high-voltage !



Summary

Laser plasma cathode is a high quality electron source.

Femtosecond electron bunch

We will apply laser plasma cathode to femtosecond applications.

Femtosecond pulse radiolysis

Femtosecond X-ray generation via laser Thomson scattering

Time-resolved electron microscope

Jitter-free synchronization with a femtosecond laser pulse

Compact


