

CHANNELING projects at LNF: From Crystal Undulators to Capillary Waveguides

Sultan Dabagov, Massimo Ferrario, Luigi Palumbo and Luca Serafini

PAHBEB - 2005, Erice, 13 October 2005

Channeling: Orientational Effects of Transmission & Radiation

1962-63: Robinson & Oen: Piercy & Lutz: 1965: Lindhard: Andersen Uggerhoj Kagan Kononez Firsov Tsyganov Gibson Kumakhov Beloshitsky Gemmel Appleton

Rev. Mod. Phys. 1974: 1 MeV e⁻ @ Cu crystal

more than 1000 articles + a number of monographs

Channeling of Charged Particles

Channeling: Continuum model

Nanotubes: continuum potential example

Potentials: Doyle-Turner approximation

$$\int (\mathbf{k}) = 4\pi Ze \sum_{j=1}^{N} a_j \exp(-k^2/4b_j^2) - form - factor for the separate fullerene$$

$$V_R(\rho) = (4Ze^2/d_R) \sum_{j=1}^{N} a_j b_j^2 \exp(-b_j^2 \rho^2)$$

$$U(\mathbf{r}) = \sum_i V_R(||\mathbf{r} - \mathbf{r}_i||) \quad continuum potential as sum of row potentials$$

$$U(r) = (16\pi dZe^2/3\sqrt{3}l^2) \sum_{j=1}^{N} a_j b_j^2 \exp\{-b_j^2[r^2 + (d/2)^2]\}I_0(b_j^2rd)$$

$$r - distance from the tube$$

$$I_0(x) - mod. Bessel function$$

Phys. Lett. A250 (1998) 360 NIM B143 (1998) 584

Potentials: Doyle-Turner approximation

Phys. Lett. A250 (1998) 360 NIM B143 (1998) 584

Simulations for particles channeling (straight)

Angle of incidence -0.5 critical angle of channeling

Simulations for channeling (bending)

 μ -capillary \rightarrow *n*-capillary:

Strong bending effect (high efficiency!) on smaller scale

Channeling: Electrons and Positrons

Channeling Radiation...

Channeling Radiation...strong Doppler effect

Bremsstrahlung & Coherent Bremsstrahlung vs Channeling Radiation

Bremsstrahlung (Deutsch, Sommerfeld) – brake radiation

@ amorphous - electron:

- •Radiation as sum of independent impacts with atoms
- •Effective radius of interaction a_{TF}
- •Coherent radiation length I_{coh} >> a_{TF}
- •Deviations in trajectory more than effective radiation angles:

Bremsstrahlung & Coherent Bremsstrahlung vs Channeling Radiation

@ interference of consequent radiation events:

phase of radiation wave

$$(\omega t - \mathbf{kr}(t))$$

Radiation field as interference of radiated waves:

Bremsstrahlung & Coherent Bremsstrahlung vs Channeling Radiation

B:	CB:	ChR:	
	NZe	$N \leftrightarrow l_{coh} \propto \gamma^2 / \omega$	$N_{e\!f\!f}$
$\propto NZ^2$	$\propto (NZ)^2$	$\propto \left(N_{eff}Z\right)$	

SPARC & SPARX & SPARXINO

<u>SPARC</u>

R&D program towards high brightness e-beam & SASE-FEL experiment (150 MeV e- : λ ~ 500 nm)

SPARX Phase I - SPARXINO

R&D towards an X-ray FEL-SASE source (1.25 GeV : λ < 10 nm)

S	ource	

P ulsed

Self A mplified R adiation

X

SPARX (2.5 GeV e- : λ = 13.5 - 1.5 nm)

Self-Amplified Pulsed X Radiation Source

Channeling Radiation & Coherent Bremsstrahlung

Self-Amplified Pulsed Coherent Radiation Source

Experimental scheme

"Channeling" line layout by Kharkov group

Calculation of ChR spectra

Channeling Radiation vs Thomson Scattering

Channeling Radiation vs Thomson Scattering

For X-ray frequencies: **100 MeV** electrons channeled in 105 μ m Si (110) emit ~ 10⁻³ ph/e⁻ corresponding to a Photon Flux ~ 10⁸ ph/sec

ChR – effective source of photons in very wide frequency range:

- in x-ray range higher than B, CB, and TS
- however, TS provides a higher degree of monochromatization and TS is not undergone incoherent background, which always takes place at ChR

SPARX-ino proposal

- Upgrade the DAFNE Linac to drive a 5-10 nm SASE-FEL
- Beam energy : 1.2 1.5 GeV
- Upgrade the injector to a RF photo-injector (SPARC-like)
- Proposal in preparation

Spectra for e+/e- channeling

Channeling Radiation

0.5 – 1.2 GeV

Comparison: Channeling Radiation vs Bremsstrahlung

		Diamond (110)				Si (110) 21.28					
U_0	eV	23.46									
d	Ă	1.2611				1.9201					
I _{BH}	cm ⁻¹	0.11				0.14					
		E	θ_L	ω_1	I_0	I_0/I_{BH}	E	θ_L	ω_1	I_0	I_0/I_{BH}
		MeV	mrad	MeV	cm ⁻¹		MeV	mrad	MeV	cm ⁻¹	
		150	0.559	0.302	34.89	317	150	0.533	0.189	19.80	141
		450	0.323	1.567	60.43	549	450	0.308	0.980	34.29	245
		750	0.250	3.372	78.02	709	750	0.238	2.109	44.27	316
		1000	0.217	5.192	90.09	819	1000	0.206	3.248	51.11	365
		1200	0.198	6.825	98.69	900	1200	0.188	4.269	55.99	400

Channeling: X-Rays and Neutrons

X-ray and neutron capillary optics

@ Basic idea of polycapillary optics is very close to the phenomenon of charged particle channeling

X-ray & Neutron Channeling: samples of capillary optics

1st generation: [**m**]

2^d generation: [cm]

3^d & 4th generations: [mm]

5th generation: [μ**m** – **nm**] http://www.unisantis.com http://www.iroptic.com

?n-capillaries?

Quantum base

Quantum base (2) - curvature

Surface channeling - "whispering X gallery"

Modes of channeling along curved surfaces

Down to bulk photon and neutron channeling

X-Ray channeling in nanotubes

JETP Letters, Vol. 81, No. 1, 2005, pp. 34–38. Translated from Pits'ma v Zhurnal Éksperimental not i Teorenicheskot Fiziki, Val. 81, No. 1, 2005, pp. 37–42 Original Russian Text Copyright © 2005 by Okotrub, Dabagov, Kudashov, Gusel vikov, Kinloch, Windle, Chuvilin, Buhisheva

Orientational Effect of the Texture of a Carbon-Nanotube Film on the Intensity of CK_α Radiation

A. B. Okotrub¹, S. B. Dabagov^{2,3}, A. G. Kudashov¹, A. V. Gusel'nikov¹, I. Kinloch⁴, A. H. Windle⁴, A. L. Chuvilin⁵, and L. G. Bulusheva¹

¹ Institute of Inorganic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 3, Novosibirsk, 630090 Russia e-mail: spectrum@che.nsk.su

² Laboratori Nazionali di Frascat, INFN, I-00044 Frascati (RM), Italy
³ Lebedev Physical Institute, Russian Academy of Sciences, Leninskiipr. 53, Moscow, 117924 Russia
⁴ Department of Materials Science and Metallurgy, Cambridge, United Kingdom
⁵ Boreskov Institute of Catalysis, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 5, Novosibirsk, 630090 Russia Received September 16, 2004; in final form, December 6, 2004

The angular dependence of the intensity of CK_{α} radiation measured from a film of oriented carbon nanotubes shows an increase in the yield of x-ray fluorescence along the growth direction of nanotubes. The angular distribution of the intensity of scattered x rays is close in magnitude to the angular distribution of the directivity of nanotubes in the film, which is determined by analyzing an electron-microscope image. To explain the propagation of radiation along the nanotubes, two mechanisms are proposed on the basis of reflection from inner walks of a tube (channeling) and an anomalous dispersion of CK, photons in the carbon madium C_{2005} Ple-

Channeling 2004 - Channeling 2006

@ "Channeling 2004"

Workshop on Charged and Neutral Particles Channeling Phenomena (Frascati 2-6 November 2004) http://www.lnf.infn.it/conference/channeling

- Radiation of relativistic charged particles in periodic structures
- Coherent scattering of electrons and positrons in crystals
- Channeling radiation of electrons and positrons in crystals
- Channeling of X-rays and neutrons in capillary systems (micro- and nano-channeling)
- Novel types of sources for electromagnetic radiation (FEL, powerful X-ray sources)
- Applications of channeling phenomena (novel radiation sources, X-ray waveguides, capillary/polycapillary optics)

@ "Channeling 2006"

International Conference on Charged and Neutral Particles Channeling Phenomena (LNF INFN, June 2006)

...with extended subjects for topics...

We have started collaboration with groups from:

Italy, Russia, USA, France, Germany, Switzerland, Ukraine, Belarus, Armenia

...list will be extended...

Appendix

Additional material

The Scientific Case in the 10 nm ⇒ 1 nm range: High Peak Brightness (>10³⁰) Ultra-short (<100 fs) radiation pulses are of great interest in various areas

- molecular physics (vibrational modes, bond breaking and formation at λ =10-1 nm)
- **physics of the clusters** (phase transitions at λ =10-1 nm,)
- surface and interfaces (real time dynamics and phase transitions, λ=10-1 nm)
- **time resolved chemical reactions** (metastable and transition states, magnetic scattering, confined systems, λ =10-1 nm)

Free Electron Laser Self-Amplified-Spontaneous-Emission (No Mirrors – Tunability – Harmonics)

The SPARX-ino opportunity

Potential for neutral particles: Moliere approximation

Phys. Lett. **A250** (1998) 360 *NIM* **B143** (1998) 584

Nanocapillary: Bending efficiency

$$n = \sqrt{1 - \theta_c^2} \approx \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$
$$\omega_p = \sqrt{\frac{4\pi N_e e^2}{m}} - plasma \quad frequency$$
$$\omega - photon \quad frequency$$

 μ -capillary: 10⁰-30⁰ through 10-20cm

n-capillary:the reduce of the dimensions by several orders with much higher efficiency

Nuovo Cimento **B116** (2001) 361

$$E_{\star} \simeq 2\gamma^2 E_{\text{las}} (1 - \cos \psi)$$

$$N_X \propto \Sigma_T f \frac{N_{e^-} N_{hv}}{\sigma_{coll}^2} = 2 \cdot 10^{9/11}$$

- Produzioni di impulsi X :
 - 10⁹ fotoni/s, durata 3 ps, monocromatici
 tunabili nel range 20 keV 1 MeV.
 Raggiungimento di 10¹¹ fotoni/s con spot focali
 all'interazione di 5 μm.
- Studi di tecniche di mammografia (e angiografia coronarica) con X monocromatici.
- Studi di single molecule protein cristallography.

MaMBO Experiment: Mammography Monochromatic Beam Outlook

La realizzazione di una immagine (su superficie 13×24 cm²) in tempi di 2600 s scende a 2.6 s con l'upgrade previsto su SPARC che porta il num. di fotoni a 2.5 10^{11} y/s

The constrast (sensitivity to tissue density variations) goes from 8% to 0.1%, while the spatial resolution goes from 0,15 -0,3 mm to 0.01-0.015 mm. This means the capability to detect a tumor 30 times smaller in volume, i.e. a 2 year earlier detection of the tumor.

Accelerazione a plasma di pacchetti di elettroni (25 pC) da 100 MeV a 130 MeV con spread energetico < 5%, emitt. < 1 µm, con laser non guidato (5 mm acc. length). Accelerazione con laser guidato (5 cm) fino a 400 MeV, gradienti > 5 GV/m.

 $\varepsilon_n \le \sqrt{\gamma \, \frac{\Delta n_p}{n_p} \frac{\lambda_p}{2\pi}}$

 $\Phi_p \approx 50 \ \mu m$ $\lambda_p \approx 30 - 100 \ \mu m$

SPARX-ino proposal

SPARC Injector + DAFNE Linac SPARX-ino a 5-10 nm SASE FEL source at LNF

SPARC & SPARX & SPARXINO

- The SPARC project engineering has been completed

- The LINAC is entering, on schedule, the installation phase
- First beam delivery in 2006

- The SPARX project has been funded
- With an up-grade of Dafne Linac the region of a few nm would be achievable.