Longitudinal Studies of Ellipsoidal Bunches

William S. Graves

2005 Erice High Brightness Beams Workshop

Motivation: fully coherent x-rays exploit new science

Electron beam properties desired for seeded FELs

Longitudinal distributions for flat-top and ellipsoidal bunches

X-ray Pulse Shaping, 8 keV on Si (400)

Inelastic X-ray Scattering (IXS)

Photon-in – photon out

 $q=k_i-k_f$ • Phonons, diffusive modes, orbitons, $\omega=\omega_i-\omega_f$ superconducting gaps...

• Excitons, plasmons, particle-hole creation, interband transitions...

•Experiment approved for FERMI@Trieste, collaboration of 8 institutions

Electron Beam Properties for Seeded FEL

Beam needs depend on application:

- 1) Sufficient flat-top to allow harmonic cascade FEL using fresh bunch method (including timing jitter)
- 2) Long x-ray pulses generating meV bandwidth
- 3) Low energy spread allowing many harmonic cascade stages

Electron beam parameters do not need to be extreme, but we always want constant values of current and energy spread

- •Ideal beam has 1 kA, $\Delta E < 1$ keV, FWHM ~ 1 ps
- •Current variations -> FEL optical phase shifts due to gain variations
- •dE/E variations -> inconsistent bunching -> FEL optical phase shifts

Longitudinal Simulations

Recent work by Luiten *et al** on transverse properties of ellipsoidal distribution suggest examining distribution's longitudinal properties.

Simulations use Parmela to compare ellipsoidal with uniform flattop in Sband injector proposed for FERMI@Trieste project.

*PRL 93 094802 (2004)

Parmela Photoinjector Simulations

S-band injector

Compare ellipsoidal bunch with flattop.

Ellipsoidal bunch 300 pC, ~1 mm radius, ~5 ps full width

RMS dimensions were set equal in each case

Flattop bunch 300 pC, ~1 mm radius, ~5 ps full width

Longitudinal Phase Space Density

October, 2005

Balancing RF radial correlation with Space Charge

Energy vs time for 300 pC ellipsoidal bunch.

Energy vs time for 100 pC ellipsoidal bunch.

dE/E reduced factor of 6

Summary

•Seeded FELs require constant current and energy spread for optimum performance.

•Ellipsoidal bunch distribution produces linear correlation of energy and time. Substantially improved over flat-top bunch.

•For thin time slices, all distributions show a strong correlation of energy with radius. Interesting new dynamics to study.

➢RMS dE/E ~ 100 eV when radial correlation removed

Slope of correlation due to radial variation of RF field is opposite to that of space charge for ellipsoidal bunch

≻Slope of radial correlation for flattop bunch reverses sign from head to tail