WG3 Summary

"New Challenges in theory and Modelling"

Guideline

• Increasing brightness :

- New Ideas
- Emittance compensation schemes and optimization
- Space charge at intermediate energy in ERL
- CSR & CSR microbunching, compression
- New acceleration schemes

Radiation Sources

- Multiple stages Cascades / Higher order harmonics
- Code design
- Quantum Fel Theory and Simulation

Three main categories

Beam Dynamics

Laser Plasma Sources

FEL and Radiation Sources

Beam dynamics

- J. Rosenzweig, Optimum Beam Creation in Photoinjectors using Spacecharge Expansion I: Theory and Simulation
- V. Litvinienko, Preservation of Beam Quality in ERLs
- M. Migliorati, Simulations of Coherent Synchrotron Radiation Effects on Beam Dynamics
- Torsten Limberg, CSRTrack Overview and Simulations
- Valeria Fusco, Wake Fields Effects in a high brightness photoinjector
- Massimo Ferrario, Beam Dynamics Around Transition in a High Brightness Linac for Short Wavelength SASE-FEL (16:50 – 17:10) (20 min)
- Cristina Vaccarezza, First Simulations Results on Laser Pulse Jitter Sensitivity and Microbunching Instability at SPARXINO (17:10 – 17:30) (20 min)

Laser Plasma Sources

- Paolo Tomassini, Controlling the Compression of an Externally Injected Electron bunch in LWFA Accelerators via Background Density Shaping
- Kenichi Kinoshita, Laser plasma cathode at University of Tokyo

FEL and Radiation sources

- Takahiro Watanabe, An experimental demonstration of superradiance in a single pass seeded FEL
- Sven Reiche, Numerical challenges for FEL
- Anatoliy Opanasenko, Wakefield Undulator Radiation
- Angelo Schiavi, Quantum FEL Numerical simulations
- K. J. Kim, Quantum effects in Gain and startup of Free Electron Laser-Wigner Function Approach
- Rodolfo Bonifacio, The Quantum FEL Experiment
- James Rosenzweig, Physical Limits on Narrow Band, inverse
 Compton Scattering X-ray Production: One Photon per Electron?

Beam Dynamics

Laser Plasma Sources

Mono-energetic Electron Generation and Plasma Diagnosis Experiments in a Laser Plasma Cathode

K. Kinoshita, T. Hosokai, A. Zhidkov¹, T. Ohkubo, A. Maekawa, K. Kobayashi and M. Uesaka

Nuclear Professional School, School of Engineering, University of Tokyo

¹.National Institute of Radiological Sciences JAPAN

A. Yamazaki², H. Kotaki², M. Kando², K. Nakajima² and S. V. Bulanov²

²·Advanced Photon Research Center, Japan Atomic Energy Research Institute Kansai

The physics and Applications of High Brightness Electron Beams, Erice (Italy), 10th-14th Oct. 2005.

FEL and radiation sources

Measured FROG Trace

•

 Nonlinear gain after saturation observed.
 Spatial distributions of higher harmonics observed.
 Wide-band multi-peak FEL spectrum obtained. Agreed well with GENESIS calculation.
 Pulse shortening from 150 fs to 100 fs, and 130 fs

_ 🗆 X

to 80 fs observed.

Time

Gain Curve

Summary

- Many new ideas coming in the field
- Older concepts are becoming more and more competitive
 - Laser plasma acceleration
 - Compton backscattering
- New demands for theory and modelling
 - Uniform Ellipsoidal bunch
 - ERL devices
 - FEL cascades
 - Quantum FEL
 - Advanced diagnostics