Magnetic Fluctuation-Induced Particle Transport
and Zonal Flow Generation in MST

D.L. Brower

Weixing Ding, B.H. Deng

University of California, Los Angeles, USA

D. Craig, G. Fiksel, V. Mirnov, S.C. Prager, J. Sarff

University of Wisconsin-Madison, Madison, Wisconsin, USA

4-7 Septembre 2006
Marseille, France
Magnetic and Current Density fluctuations play an important role in plasma relaxation in the Reversed Field Pinch as well as tokamak configurations.

All processes coupled through δJ and nonlinear mode interactions.
q Profile and Core Magnetic Fluctuation Spectrum

$T_e \sim T_i \sim 500 \text{ eV}$

$\frac{r B_T}{R B_P} = q$

Tearing Modes and broadband magnetic turbulence

Tearing modes and broadband magnetic turbulence
Magnetic Fluctuation-Driven Particle Flux

Fluctuation-Induced flux

\[
\Gamma_{i,e} = \Gamma_{i,e}^{es} + \Gamma_{i,e}^{em} = \frac{\langle \tilde{n}_e \tilde{E}_\perp \rangle}{B_0} \pm \frac{\langle \tilde{j}_{\parallel i,e} \tilde{b}_r \rangle}{eB_0}
\]

- Electrostatic
- Magnetic

Radial Charge Transport

\[
\Gamma_q = \Gamma_i - \Gamma_e = \frac{\langle \tilde{j}_{\parallel i} \tilde{b}_r \rangle}{eB_0}
\]

\[
j_r = e\Gamma_q
\]

non-ambipolar flux
Fast polarimeter measures core mean and fluctuating B & J

Faraday rotation angle

$\Psi \sim \int nB \cdot dl$

$\delta \Psi = c_F \int n_0 \delta \overline{B} \cdot d\overline{l} + c_F \int \delta n \overline{B}_0 \cdot d\overline{l}$

$m=1$ activity

$x=-17$ cm

$\delta B \approx 33$ [Gauss]

11-chord FIR laser

32 magnetic coils toroidal array
Ampere's Law: \[\oint_L \mathbf{dB} \cdot d\mathbf{l} = \mu_0 \delta I \]

Faraday Rotation Fluctuation:
\[\delta \Psi = c_F \int n_0 \mathbf{dB} \cdot d\mathbf{l} \approx c_F \bar{n}_0 \int \mathbf{dB} \cdot d\mathbf{l} \]

\[\oint_L \mathbf{dB} \cdot d\mathbf{l} \approx \left[\int \delta B_z dz \right]_{x_1} - \left[\int \delta B_z dz \right]_{x_2} \]
\[\approx \mu_0 \delta I \phi = \frac{\delta \Psi_1 - \delta \Psi_2}{c_F \bar{n}_0} \]

Loop between polarimeter chords is equivalent to a Rogowski coil measurement

Ding, Brower et al. PRL (2003)
Measured Magnetic and Current Density Fluctuation Profiles

\[\frac{\delta j_\varphi}{J_0} \sim 6\% \]

\((m,n)=(1,6)\) tearing mode

spatially localized in core, peaks at resonant surface

surges at sawtooth crash

\[\frac{\delta B}{B} \sim 1\% \]

\(r=r_{q(1,6)}\)
Measured Charge Flux at sawtooth crash in MST

\[
\Gamma_q = \frac{\langle \tilde{j}_r \tilde{b}_r \rangle}{eB} = \frac{1}{eB nB} R (k \cdot \tilde{B}) \frac{1}{r} \tilde{b}_r \frac{\partial}{\partial r} r \tilde{b}_\theta = \frac{1}{eB} B_r \left(1 - \frac{m}{nq(r)} \right) \langle \tilde{j}_r \tilde{b}_r \rangle
\]

where \(\nabla \times \delta \tilde{B} = \mu_0 \delta \tilde{J} \) and \(\frac{|r - r_s|}{r_s} \ll 1 \) and \(\langle \ldots \rangle \) denotes flux surface average.

\[
\frac{1}{\mu_0} < -\frac{1}{r} \tilde{b}_r \frac{\partial}{\partial r} r \tilde{b}_\theta > = \frac{1}{\mu_0} \langle \tilde{j}_r \tilde{b}_r \rangle
\]

Maxwell Stress

\[
\Gamma_q = \langle \delta j \delta b_r \rangle / eB
\]

\[
\frac{\Gamma_q}{\Gamma_{\text{Particle}}} \leq 1\%
\]

Charge flux is radially localized and changes sign across resonant surface.
Charge Transport and Radial Electric Field

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \tilde{J} = 0, \quad \nabla \cdot \tilde{E} = \frac{\rho}{\varepsilon_0} \quad \Rightarrow \quad \varepsilon_0 \frac{\partial E_r}{\partial t} = e(\Gamma^i_r - \Gamma^e_r) \]

\[\frac{\langle \tilde{j}_r \cdot \tilde{b}_r \rangle}{B} \rightarrow 1 \sim 4 \text{ [A/m}^2\text{]} \text{ at the core (FIR Faraday)} \]

\[\Delta \tilde{E}_r = \int \frac{\langle \tilde{j}_r \cdot \tilde{b}_r \rangle}{\varepsilon_0 B} dt \]

Leads to a huge electric field, \(\sim 50 \text{ MV/m in core} \)

However, shielding occurs due to ion polarization current

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \tilde{J} = 0, \quad \nabla \cdot \tilde{E} = \frac{\rho}{\varepsilon_0 \varepsilon_\perp} \]

\[\varepsilon_0 \varepsilon_\perp \frac{\partial E_r}{\partial t} = \frac{\langle \tilde{j}_r \cdot \tilde{b}_r \rangle}{B} \]

\[\varepsilon_\perp = 1 + \left(\frac{c}{V_A} \right)^2 \]

\[\Delta E_r = \left(\frac{1}{1 + \frac{c^2}{V_A^2}} \right) \int \frac{\langle \tilde{j}_r \cdot \tilde{b}_r \rangle}{\varepsilon_0 B} dt \approx \left(\frac{V_A}{c} \right)^2 \int \frac{\langle \tilde{j}_r \cdot \tilde{b}_r \rangle}{\varepsilon_0 B} dt \]

At reconnection, a radial electric field is established due to non-ambipolar transport, but electric field is reduced by \(10^4\) due to shielding by the ion polarization drift.
Localized Radial Electric Field and ExB Flow

Charge flux generates a local E_r with spatial scale ~5 cm that changes sign across resonant surface.

1. ExB generates flow and flow shear (which may strongly damp the mean flow)
2. Flow is toroidally and poloidally symmetric ($m=0, n=0$) *zonal flow*
driven by resistive tearing modes
Measurements indicate the following coupled relaxations:

- Lorentz force $\langle \delta J \times \delta B \rangle$
- Hall dynamo on electrons
- Current relaxation (electron velocity)
- Torque on ions
- Ion force balance
- Momentum relaxation (ion velocity)
- Ion viscous damping
- Electric Field and Flow shear
- Zonal flow

Tearing mode: $\nabla J_{||}(r) \rightarrow \delta B, \delta J$

Charge Transport $\langle \delta j_{||}/b_{r} \rangle$
Evidence of potential structure?

Potential measurement by Heavy Ion Beam Probe (HIBP)

Possible Effect of Electrical Field on Plasmas (Open Questions)

A potential well is formed near the reconnection layer.

Questions not clear to me:

(1) Where does electric field energy come from?

(2) Do ions and electrons gain energy from the field?

(3) Where does flow energy go?
Momentum transport and nonlinear torque

\[\langle \delta J \delta B \rangle_{/>} \]

with \(k_3 (m=0,n=1) \)

without \(k_3 (m=0,n=1) \)

\[\vec{k}_1 \pm \vec{k}_2 = \vec{k}_3 \]

\[
\begin{pmatrix}
1 \\
7
\end{pmatrix}
-
\begin{pmatrix}
1 \\
6
\end{pmatrix} =
\begin{pmatrix}
0 \\
1
\end{pmatrix}
\]

\[\langle \delta J \delta B \rangle \text{ and charge transport observed when three modes are coupled.} \]
What dissipates the electric field or dissipates ExB flow after the sawtooth crash?
Perpendicular Momentum Balance Equation

\[\rho \frac{\partial V_{E \times B}}{B \partial t} - \frac{\mu^*}{B} \nabla^2 V_{E \times B} = \frac{\langle \tilde{j}_\parallel \tilde{b}_r \rangle}{B} \]

\(\rho \) is mass density and \(\mu^* \) is the classical viscosity coefficient

\[\frac{\rho}{B^2} \frac{\partial E_r}{\partial t} - \frac{\mu^*}{B^2} \nabla^2 E_r = \frac{\langle \tilde{j}_\parallel \tilde{b}_r \rangle}{B} \]

ion viscosity \(\mu^*_\perp = \frac{3n k T_i}{10 \omega_{ci}^2 \tau_i} \)

\[\Gamma_x^i - \Gamma_x^e = \langle \tilde{j}_z \tilde{B}_x \rangle \frac{eB_0}{eB_0} + c \frac{\partial}{\partial x} \nabla_{xys} = \frac{1}{4 \pi e} \frac{\partial E_{0x}}{\partial t} + \frac{n_i m_i c^2}{eB_0^2} \frac{\partial E_{0x}}{\partial t} \]

See: R. E. Waltz, Phys. Fluids, 25, 1269(1982);

\[\varepsilon_0 (1 + \left(\frac{c}{V_A} \right)^2) \frac{\partial E_r}{\partial t} \approx \varepsilon_0 \left(\frac{c}{V_A} \right)^2 \frac{\partial E_r}{\partial t} = \frac{\langle \tilde{j}_\parallel \tilde{b}_r \rangle}{B_0} + \frac{\mu^*}{B_0} \nabla^2 V_{E \times B} \]
Electric Field Dynamics (with Collisional Dissipation)

![Graph showing electric field dynamics](image_url)
Effect of mode-mode interaction on $<\delta J x \delta B>$ force and charge transport result from nonlinear mode-mode interaction

\[q = \frac{r B_T}{R B_p} \]

\[\vec{k} \cdot \vec{B} = 0 \quad \text{(resonant surface)} \]

\[\vec{k}_1 \pm \vec{k}_2 = \vec{k}_3 \]
MST Reversed-Field Pinch (RFP) is toroidal configuration with relatively weak toroidal magnetic field B_T (i.e., $B_T \sim B_p$)

$$q(r) = \frac{r \frac{B_T}{R}}{B_p} < 1$$

$R_0 = 1.5 \text{ m}$, $a = 0.51 \text{ m}$, $I_p < 600 \text{ kA}$

$B_T \sim 3-4 \text{ kG}$, $n_e \sim 10^{19} \text{ m}^{-3}$, $T_{e0} < 1.3 \text{ keV}$

$\tau_E \sim 10 \text{ ms}$, $\beta = \langle p \rangle / B^2(a) = 15\%$
Measured Core Magnetic Fluctuations by Faraday rotation

Faraday Rotation $\Psi = c_F \int n \vec{B} \cdot d\vec{l}$

$\Psi = \Psi_0 + \delta \Psi$, $\vec{B} = \vec{B}_0 + \delta \vec{B}$, $n = n_0 + \delta n$

$\delta \Psi = c_F \int n_0 \delta \vec{B} \cdot d\vec{l} + c_F \int \delta n \vec{B}_0 \cdot d\vec{l}$

$c_F \int \tilde{n} B_{z_0} dz = c_F \int \tilde{n} B_{\theta} \cos \theta dz$

$\leq c_F \int (\mu_0 J(0) \frac{r}{r} - \tilde{n} dz = c_F \frac{\mu_0 J(0)}{2} r x \int \tilde{n} dz \to 0$

$\delta \Psi \approx c_F \int n_0 \delta \vec{B} \cdot d\vec{l}$

$\delta \vec{B} = 33$ [Gauss]
(1) Measured Current Profile Relaxation

At crash, current profile flattens

\[E_{\parallel} \approx E_T(r) = \frac{V_L}{2\pi R} - \int_r^a \frac{\partial}{\partial t} B_P(r',t)\,dr \]

At crash, electric field increases

\[E_{\parallel} \gg \eta J_{\parallel} \]

\[\text{Brower, Ding, et al PRL, 88, 185005 (2002)} \]
Hall Dynamo is balanced by Inducted Electric Field

\[\eta_{||} \langle J \rangle_{||} = \langle E \rangle_{||} + \langle \vec{\delta} \times \vec{\delta} B \rangle_{||} - \frac{\langle \vec{\delta} \vec{J} \times \vec{\delta} B \rangle_{||}}{n_e e} \]

MHD dynamo

Hall Dynamo

Parallel Mean Field Ohm’s Law from 2-Fluid Theory

\[\frac{\langle \delta J \times \delta B \rangle_{||}}{n_e e} \approx \frac{B_p}{B_T} \left(1 + \left(\frac{B_T}{B_p}\right)^2\right) \langle \delta j \varphi b_r \rangle \]

\[E_{||}, <\delta J \times \delta B >_{||}/n_e e \]

Ion Momentum (Torque) over Sawtooth Crash

\[
\rho \frac{\partial \tilde{V}}{\partial t} + \rho \tilde{V} \cdot \nabla \tilde{V} = \langle \delta J \times \delta B \rangle_{\parallel} + \mu_{\perp}^* \langle \nabla^2 \tilde{V} \rangle_{\parallel}
\]

Huge Imbalance !!

\[
\langle \rho \frac{\partial \tilde{V}}{\partial t} \rangle_{\parallel} + \rho \tilde{V} \cdot \nabla \tilde{V} \rangle_{\parallel} = \langle \delta J \times \delta B \rangle_{\parallel} + \mu_{\perp}^* \langle \nabla^2 \tilde{V} \rangle_{\parallel}
\]

\[
\begin{align*}
\sim 5 \text{ N/m}^3 & \quad \delta \tilde{V} \leq 1 \text{ km/s} \\
\Delta r \geq 1 \text{ cm} & \quad \sim 60 \text{ N/m}^3 \\
\rho \langle \tilde{V} \cdot \nabla \tilde{V} \rangle \leq 3 \text{ N/m}^3 & \quad \mu_{\perp} \frac{V}{a^2} \sim -10^{-2} \sim 10^{-3} \text{ N/m}^3
\end{align*}
\]

Classical dissipation
At sawtooth crash ion momentum in the core drops much faster than classical viscous time.
Fluctuation-Induced Radial Charge Flux

\[
\Gamma_q = \frac{\langle \tilde{j}_\parallel \tilde{b}_r \rangle}{eB} = \frac{\langle \tilde{j}_{\parallel,i} \tilde{b}_r \rangle}{eB} - \frac{\langle \tilde{j}_{\parallel,e} \tilde{b}_r \rangle}{eB}
\]

charge flux

On MST for a specified (m,n) mode

\[
\langle \tilde{j}_\parallel \tilde{b}_r \rangle = \langle \tilde{j}_\theta \frac{B_p}{B} + \tilde{j}_\phi \frac{B_T}{B} \rangle \tilde{b}_r \rangle
\]

\[
\nabla \times \delta \vec{B} = \mu_0 \delta \vec{j}
\]

\[
\vec{k} \cdot \vec{B} = \frac{m}{r_s} B_\theta + \frac{n}{R} B_\phi
\]

\[
\frac{R}{nB} (\vec{k} \cdot \vec{B}) < \frac{1}{r} \tilde{b}_r \frac{\partial}{\partial r} r \tilde{b}_\theta \rangle = \frac{R}{nB} (\vec{k} \cdot \vec{B}) < \tilde{j}_\phi \tilde{b}_r \rangle \]

\[
\frac{|r - r_s|}{r_s} \ll 1
\]

At mode resonant surface charge flux is zero,

but can be non-zero locally (near the resonant surface) to form charge filamentation

Phase between current and magnetic fluctuation

\[
< \delta j_\phi(r_s) \delta b_r(r_s) > \\
= | \delta j_\phi(r_s) || \delta b_r(r_s) | \cos \Delta
\]

\[
\Delta = ph__ \delta j_\phi(r_s) - ph__ \\
= ph__ \delta j_\phi(r_s) - ph__ \\
\]

Perpendicular global magnetic fluctuation has a constant phase
Magnetic Fluctuation Spectrum

Tearing Modes

magnetic turbulence

Tearing modes and broadband magnetic turbulence

standard 400ka
ppcd 400ka

noise

$P(f) \, [\text{Gs}^2/\text{kHz}]$

$f \, [\text{kHz}]$
RFP Safety Factor Profile

$T_e \sim T_i \sim 500 \text{ eV}$

$q = \frac{r B_T}{R B_P}$

$(0,1)$
Charge Transport and Radial Electric Field

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0, \quad \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \quad \Rightarrow \quad \varepsilon_0 \frac{\partial E_r}{\partial t} = e(\Gamma_r^i - \Gamma_r^e)
\]

\[
< \tilde{j}_{//} \tilde{b}_r > \quad B
\]

10⁻¹² [A/m²] at the edge (probe, Neal Crocker, 2001)

1⁻⁴ [A/m²] at the core (FIR Faraday)

If Charge flux induced only by magnetic fluctuation

\[
\Delta \tilde{E}_r = \int \frac{< \tilde{j}_{//} \tilde{b}_r >}{\varepsilon_0 B} dt
\]

560 [MV/m] ~ 6.7 [GV/m] at the edge (dt=0.5ms) >> T_e/a

56 ~ 224 [MV/m] at the core (dt=0.5ms) >> T_e/a
Ion Polarization Drift

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0, \quad \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0 \varepsilon_\perp} \]

\[\varepsilon_0 \varepsilon_\perp \frac{\partial E_r}{\partial t} = \frac{\langle \tilde{j}_{//} \tilde{b}_r \rangle}{B} \]

\[\varepsilon_\perp = 1 + \left(\frac{c}{V_A} \right)^2 \]

Due to ion polarization current

\[
\Delta E_r = \left(\frac{1}{1 + \frac{c^2}{V_A^2}} \right) \int \frac{\langle \tilde{j}_{//} \tilde{b}_r \rangle}{\varepsilon_0 B} dt \approx \left(\frac{V_A}{c} \right)^2 \int \frac{\langle \tilde{j}_{//} \tilde{b}_r \rangle}{\varepsilon_0 B} dt
\]

At reconnection, a radial electric field is established due to non-ambipolar transport, but electric field is reduced by 10^4 due to shielding by the ion polarization drift.

See: R. E. Waltz, Phys. Fluids, 25, 1269 (1982);
Magnetic fluctuations play an important role in magnetic reconnection in the laboratory plasma and astrophysical plasmas.

\[\eta_{\parallel} \langle J \rangle_\parallel = \langle E \rangle_\parallel + \langle \delta \vec{v} \times \delta \vec{B} \rangle_\parallel - \langle \delta \vec{J} \times \delta \vec{B} \rangle_\parallel / n_e e \]
(1) Hall Dynamo: \[\frac{<\delta J \times \delta B>}{ne} \]

(2) Ion Momentum Balance: \[<\delta J \times \delta B> \]

(3) Magnetic Fluctuation-Induced Particle Transport;
 - Maxwell Stress \[\frac{<\delta J \parallel b_r>}{eB} \]
 \[\frac{1}{r} \frac{\partial}{\partial r} (r \tilde{b}_r \tilde{b}_\theta) \]

All three processes are coupled through current density fluctuations

(4) Nonlinear mode-mode interaction

Identify the role of magnetic and current density fluctuations in particle and momentum transport