Erratum: “Pulsed currents carried by whistlers. VI. Nonlinear effects; VII. Helicity and transport in heat pulses” [Phys. Plasmas 3, 2589 and 2599 (1996)]

R. L. Stenzel and J. M. Urrutia
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

(Received 15 October 1996; accepted 15 October 1996)

[S1070-664X(97)03201-1]

Technical difficulties in the processing and printing of several of the figures in these two papers resulted in a loss of figure clarity, and, thus, some loss of data. Two of the figures are reprinted below with the original captions. Figure 11 appeared originally on p. 2596 of Vol. 3 and Fig. 9 on p. 2605. The Publisher apologizes for any inconvenience caused.

FIG. 9. Contour plots of the magnetic fields components $B_x = \pm B_y$ and B_z in the $y-z$ plane at different times showing a different decay for both components.
FIG. 11. Contours of constant magnetic field component B_z in y–z planes (left-hand panels) and z–t planes (right-hand panels), demonstrating nonlinear effects for electrode-excited current pulses. In a cold collisional plasma ($kT_e = 0.5$ eV, $\nu_e/\omega_e = 0.5$), small amplitude pulses are damped, while large pulses penetrate further by creating a channel of high conductivity due to electron heating. In a uniformly preheated, nearly collisionless plasma (see Fig. 5: $\nu_e/\omega_e \ll 0.1$), both small and large amplitude pulses propagate linearly since self-heating no longer improves the conductivity significantly.