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Testing General Relativity to 10-9



BEACON Science Objectives

 Qualitative Objectives, to test:
 The metric nature of General Relativity (GR)

 Alternative theories of gravity & cosmology (i.e.
scalar-tensor) by searching for cosmological
remnants of scalars in the solar system

 Quantitative Objectives, to measure:
 The key Eddington PPN parameter γ with

accuracy of 1 part in 109 – a factor of 30,000
improvement over Cassini results

 Direct and independent measurement of the
Eddington PPN parameter β via gravity effect on
light to ~0.01% accuracy

 The 2-nd order gravitational deflection of light with
accuracy of ~1 × 10-4, including first ever
measurement of the PPN parameter δ

 Frame dragging effect on light (first observation):
~1 × 10-3 accuracy
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 The Mission Should be Affordable (Medium-class ~ $600M)
 Single launch vehicle → Atlas V 501
 Stay as close to Earth as possible → Super-GEO (80,000 km)
 Simplify spacecraft as much as possible → Optical truss
 Move mission segments to ground → Ground-based ranging

 The Mission Should be Low Risk
 Leverage laser metrology developed by NASA for SIM
 Beam acquisition & tracking from laser-com systems
 GPS or GPS-like Navigation
 Flight-heritage accelerometers (10-10 m/s2)
 Conventional thrusters (sub-mN range, ~200 m/s)
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BEACON Mission Constraints



Accuracy needed:
 Inter-S/C Distance: 

~ 0.1 nm
 Position relative to Earth:

~ 6 mm

The BEACON Mission Concept

Geometric redundancy enables a 10-9 measurement of
curvature of the terrestrial gravity field without need for

drag-free mass at 0.1 nm level

Configuration:
• 4 spacecraft in common plane
• 80,000 km  circular orbits
• S1-S4 LOS grazes limb

Controls:
• S4 position to
maintain plane &
modulate LOS

Science Signal:
•Gravitational delay of
beam passing close to
Earth limb ~ 10 cm

Measurements:
• 6 inter-spacecraft
distances
• Earth-relative
position



BEACON CONOPS

 S1, S2 & S3 maintain a circular, 80,000 km orbit.
 Small burns to cancel Lunar, Solar, J2 & J4,

radiation pressure.
 S4 is controlled actively to perform measurement

cycles and stay in plane.
 A measurement cycle:

1. Small pair of burns to lower S4 semi-major axis
to 79,900 km and circularize.

2. Let line of sight drift from 3 RE to 1 RE. (few
weeks), acquire data.

3. Small pair of burns to raise S4 semi-major axis
to 80,100 km and circularize.

4. Let line of sight drift from 1 RE to 3 RE,acquire
data.

 There is a trade between duration of cycles and ΔV.
 For instance use 16 m/s per cycle and complete

a cycle in about 1 month.

Active control of formation
allows for repeated

measurement cycles with
small fuel expenditures.



Impact Parameters & Range Rates vs. Time

S1-S4

S3-S4

Impact parameter varies from 1 to 3 RE while keeping range rates small enough to measure well.
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 Laser Ranging Between Spacecraft
 Require: ~0.1 nm in 1000 sec
 Max range rate < 10 m/s (d<10 MHz)
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Focus #1: Laser Metrology Link

L
O

f1

M1+ = f1+(f2+d)

M1- = f1-(f2+d)

L
O

f2

M2+ = f2+(f1+d)
M2- = f2-(f1+d)

d = v/c

M2- + M1- = -2 d

Parameter Value
Telescope Diameter 0.1 m
Transmitted Power 0.1 W

Wavelength 1064 nm
Photons Transmitted 5.38e+16 ph/sec

Distance 160,000 km
Progagation Factor 2.39E-09
Transmission Eff. 9.2%
Received Power 2.19e-12 W

1.18e+8 ph/sec
SNR in 1 sec 10870

Path Sigma in 1 sec 0.1 nm

Laser-link margins are good!
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Simplified Instrument Layout

S4 Instrument
L

L

L

3-CC

To S1

To S2

To S3

 Each spacecraft
requires 3 laser
tranceivers

 The three links require
a common metrology
fiducial to define truss
vertex.
 Laser links & multi-

facet corner cubes
have been
developed for SIM

 The beam-launchers
will require actuation in
one axis as LOS
changes.



SIM Technology Applied to Fundamental Physics

 The Space Interferometry Mission (SIM) is a very high accuracy
astrometry (1 micro-arcsecond) instrument, designed to study
 Terrestrial planets around nearby stars,
 Dark matter in the galactic disk, halo, and the local group.

 Although SIM is a stellar interferometer, it required the
development of high precision laser metrology flight hardware.

 SIM completed its technology program in 2005
 Developed laser path-length metrology with single digit

picometer accuracy
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SIM Technology Components/Systems
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Component Technology Subsystem-Level Testbeds

Picometer
Knowledge
Technology

Nanometer
Control
Technology

Numbers before box
labels indicate HQ
Tech Gate #’s
(1 through 8)

System-Level

2: STB-3 (three baseline
nanometer testbed)

3, 5, 6, 7: MAM
Testbed
 (single baseline picometer
testbed) Narrow & Wide
Angle Tests

4: Kite Testbed (Metrology Truss)

STB-1 (single baseline
nanometer testbed)

Optical 
Delay Line

1: Beam Launchers

Hexapod
Reaction Wheel

Isolator

Metrology Source Absolute Metrology

High Speed CCD Fringe Tracking
Camera

Multi-Facet Fiducials

1999

4:Oct2002

3:Sep2002; 5:Mar2003
6:Sep2003; 7:Jun2004

8:Jul2005

1:Aug2001

2:Nov2001

2001

1999

1998

1998

1998 2000

1999 

TOM Testbed
(distortion of front
end optics)

8: Overall system 
Performance via

Modeling/Testbed
Integration

All 8 Completed



Metrology Stability

 Instrumental errors in the SIM metrology laboratory testbed
 At least down to 0.1 nm after 104 sec
 This was without a T-stabilized reference cavity
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Laboratory testbeds
have demonstrated
required pathlength

measurement stability



Focus #2: Formation Knowledge

 Beam impact parameter must be known to 10-9, i.e. 6 mm
 Laser ranging or microwave tracking for absolute

position/orbit determination
 Achieves ~ mm performance using lasers
 GPS-like system offers possibility of autonomous

measurement onboard spacecraft (simpler ops = lower
cost), but requires multi-frequency tracking

 Sensitive accelerometers to measure non-gravitational
forces
 ONERA SuperSTAR accelerometer on GRACE

achieves a sensitivity of ~ 10-10 m/s2 sufficient to cover
~3 (impact parameters) to 12 (formation plane) hours

 The SuperSTAR is a drag-free mass of sorts, but
requirements are much relaxed: 10 cm vs 0.1 nm.
This is by virtue of the reliance on the optical truss.

ONERA

NASA/GSFC

Combination of flight-heritage hardware and existing
facilities will provide required positional knowledge.



Focus #3: Formation Control

 Spacecraft must be maintained in plane to ~10 cm
 Largest single source of perturbation in this orbit is the Moon,

which produces ~ 2 x 10-7 m/s2 accelerations.
– Cannot be left uncontrolled more than ~ few minutes
– Minimize out-of-plane effect by putting formation in Lunar

orbit plane as well as possible (precession limits).
 Continuous low-thrust corrections needed

– ~200 m/s/year very conservatively
– ~0.5 mN max thrust levels (conventional monopropellant)

 Trade-off between 3 passive & 1 active spacecraft, or 4 active
spacecraft

– Redundancy, identical spacecraft, inter-spacecraft
communications



Formation Control Simulations

Un-controlled

Controlled

High-fidelity simulations indicate S4 can be kept within 0.1 m of
formation plane for months using small amounts of thrust out of plane.

Total ΔV = 57 m/s

Simulation
includes:
• 32-term
gravity model
• Lunar, Solar &
Planetary
perturbations
•Solar radiation
pressure



BEACON Budgets

Item Mass
(kg)

Cont.
Factor

Allocated
Mass (kg)

Mechanical/Structure 30 30.0% 39kg
Thermal 5 30.0% 6.5kg
Attitude Control 7 30.0% 9.1kg
RF Communications 5 30.0% 6.5kg
Command & Data
Handling 4 30.0% 5.2kg
Electric Power 15 30.0% 19.5kg
Propulsion 10 30.0% 13kg
Harness 8 30.0% 10.4kg
Spacecraft Bus Mass 84 109.2kg
Laser Local Oscillator 3 30.0% 3.9kg
Beam Launchers 30 30.0% 39kg
GPS
Receiver/Transponder 5 30.0% 6.5kg
Instrument Thermal
Control 10 30.0% 13kg
Instrument Harness 5 30.0% 6.5kg
Instrument Mass 53 68.9kg
Observatory Dry Mass 137 178.1kg
Desired ΔV 400m/s Assumed Isp
Required Propellant Mass 35.7kg 224sec
Propellant Mass Provided 39.278kg

Observatory Wet Mass 176kg 217kg

Item Mass (CBE)
Cont.
Factor Allocated Mass

Observatory Dry Mass 137 30.0% 178.1kg
Observatory Wet Mass 176.3 23.3% 217.4kg
Number of Observatories 4
Carrier Structure 173.9 30.0% 226.1kg
Constellation Mass 879.0 1095.6kg
Apogee Burn ΔV 1367.5m/s Assumed Isp (s) 315
Required Propellant 612.4 30.0% 796.2kg
Propulsion System Mass 200 30.0% 260.0kg
Flight System Dry Mass 921.9 30.0% 1198.5kg
Flight System Wet Mass 1691.5 27.2% 2151.8kg
Launch Vehicle Capability 3604kg
Dry Mass Margin 1452kg

121.2%

Cost             

by Phase

Cost 

(FY08$M)

Dev 

Cost, %

Phase A 12.5$     1.9%

Phase B 123.6$   19.1%

Phase C/D 512.4$   79.0%

Phase E 27.6$     

Total: 676.1$   100.0%



Optical vs. Microwave:

 Leverage advances in optical metrology from SIM & telecom boom to yield
105 increase in path-length precision.

 Factor of ̃30,000 improvement in state-of-art tests of GR

Simplified Experimental Approach:

A Low Cost Experiment:

 Redundant optical truss implies no need for ultra-precise drag-free
environment for BEACON spacecraft

 Geocentric orbit

 Optical apertures 10-15 cm

 Conventional thrusters (monopropellant)

 Flight-heritage accelerometers

 Leverage GPS & laser tracking stations

A 21st Century Test of Gravity


