BEACON

(Beyond Einstein Advanced Coherent Optical Network) *Testing General Relativity to 10*-9

Benjamin F. Lane

Charles Stark. Draper Laboratory 555 Technology Square, Cambridge, MA 02139 USA

Slava G. Turyshev, Michael Shao, André R. Girerd

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91009 USA

BEACON Science Objectives

- Qualitative Objectives, to test:
 - The metric nature of General Relativity (GR)
 - Alternative theories of gravity & cosmology (i.e. scalar-tensor) by searching for cosmological remnants of scalars in the solar system
- Quantitative Objectives, to measure:
 - The key Eddington PPN parameter γ with accuracy of 1 part in 10⁹ – a factor of 30,000 improvement over Cassini results
 - Direct and independent measurement of the Eddington PPN parameter β via gravity effect on light to ~0.01% accuracy
 - The 2-nd order gravitational deflection of light with accuracy of ~1 × 10⁻⁴, including first ever measurement of the PPN parameter δ
 - Frame dragging effect on light (first observation): ~1 × 10⁻³ accuracy

Relativistic Effect	Current	BEACON
Curvature of space-time, $\boldsymbol{\gamma}$	2×10 ⁻⁵	1×10 ⁻⁹
Geodetic precession	4.7×10 ⁻³	5×10⁻⁵
Frame-dragging precession	1×10 ⁻¹	3×10 ⁻⁴
Gravity inverse square law	2×10 ⁻¹¹ @ 2.5 mAU	3×10 ⁻¹⁵ @ 0.5 mAU
2nd order gravity effects, μ G ²	n/a	3×10 ⁻⁴

- The Mission Should be **Affordable** (Medium-class ~ \$600M)
 - Single launch vehicle \rightarrow Atlas V 501
 - Stay as close to Earth as possible \rightarrow Super-GEO (80,000 km)
 - Simplify spacecraft as much as possible \rightarrow Optical truss
 - Move mission segments to ground \rightarrow Ground-based ranging
- The Mission Should be Low Risk
 - Leverage laser metrology developed by NASA for SIM
 - Beam acquisition & tracking from laser-com systems
 - GPS or GPS-like Navigation
 - Flight-heritage accelerometers (10⁻¹⁰ m/s²)
 - Conventional thrusters (sub-mN range, ~200 m/s)

Configuration:

BEACON CONOPS

- S1, S2 & S3 maintain a circular, 80,000 km orbit.
 - Small burns to cancel Lunar, Solar, J2 & J4, radiation pressure.
- S4 is controlled actively to perform measurement cycles and stay in plane.
- A measurement cycle:
 - 1. Small pair of burns to lower S4 semi-major axis to 79,900 km and circularize.
 - 2. Let line of sight drift from 3 R_E to 1 R_E . (few weeks), acquire data.
 - 3. Small pair of burns to raise S4 semi-major axis to 80,100 km and circularize.
 - 4. Let line of sight drift from 1 R_E to 3 R_E , acquire data.
- There is a trade between duration of cycles and ΔV .
 - For instance use 16 m/s per cycle and complete a cycle in about 1 month.

Active control of formation allows for repeated measurement cycles with small fuel expenditures.

Impact parameter varies from 1 to 3 R_E while keeping range rates small enough to measure well.

	Parameter	Value
Laser Ranging Retween Spacecraft	Telescope Diameter	0.1 m
	Transmitted Power	0.1 W
Require: ~0.1 nm in 1000 sec	Wavelength	1064 nm
= Max range rate < 10 m/s (d<10 MU)	Photons Transmitted	5.38e+16 ph/sec
$\blacksquare \text{ max range rate < 10 m/s (u<10 m)}$	Distance	160,000 km
	Progagation Factor	2.39E-09
$M_{1-} = f_1 - (f_2 + d)$ $M_0 = f_0 - (f_1 + d)$	Transmission Eff.	9.2%
$\mathbf{n}_{2} = \mathbf{n}_{2} (\mathbf{n}_{1} + \mathbf{n}_{2})$	Received Power	2.19e-12 W
$W_{1+} = T_1 + (T_2 + \alpha)$ $W_{2+} = T_2 + (T_1 + \alpha)$		1.18e+8 ph/sec
	SNR in 1 sec	10870
	Path Sigma in 1 sec	0.1 nm
$f_{1} \qquad d = v/c \qquad f_{2}$ $M_{2-} + M_{1-} = -2 d$		ARE

Simplified Instrument Layout

- Each spacecraft requires 3 laser tranceivers
- The three links require a common metrology fiducial to define truss vertex.
 - Laser links & multifacet corner cubes have been developed for SIM
- The beam-launchers will require actuation in one axis as LOS changes.

SIM Technology Applied to Fundamental Physics

- The Space Interferometry Mission (SIM) is a very high accuracy astrometry (1 micro-arcsecond) instrument, designed to study
 - Terrestrial planets around nearby stars,
 - Dark matter in the galactic disk, halo, and the local group.
- Although SIM is a stellar interferometer, it required the development of high precision laser metrology flight hardware.
- SIM completed its technology program in 2005
- Developed laser path-length metrology with single digit picometer accuracy

- Instrumental errors in the SIM metrology laboratory testbed
 - At least down to 0.1 nm after 10⁴ sec
 - This was without a T-stabilized reference cavity

Focus #2: Formation Knowledge

- Beam impact parameter must be known to 10⁻⁹, i.e. 6 mm
- Laser ranging or microwave tracking for absolute position/orbit determination
 - Achieves ~ mm performance using lasers
 - GPS-like system offers possibility of *autonomous* measurement onboard spacecraft (simpler ops = lower cost), but requires multi-frequency tracking
- Sensitive accelerometers to measure non-gravitational forces
 - ONERA SuperSTAR accelerometer on GRACE achieves a sensitivity of ~ 10⁻¹⁰ m/s² sufficient to cover ~3 (impact parameters) to 12 (formation plane) hours
 - The SuperSTAR is a drag-free mass of sorts, but requirements are much relaxed: 10 cm vs 0.1 nm. This is by virtue of the reliance on the optical truss.

Combination of flight-heritage hardware and existing facilities will provide required positional knowledge.

GEONS Provides Unprecedented Autonomous Position Accuracy

Time (**NASA/GSFC**

- Spacecraft must be maintained in plane to ~10 cm
 - Largest single source of perturbation in this orbit is the Moon, which produces ~ 2 x 10⁻⁷ m/s² accelerations.
 - Cannot be left uncontrolled more than ~ few minutes
 - Minimize out-of-plane effect by putting formation in Lunar orbit plane as well as possible (precession limits).
 - Continuous low-thrust corrections needed
 - ~200 m/s/year very conservatively
 - ~0.5 mN max thrust levels (conventional monopropellant)
 - Trade-off between 3 passive & 1 active spacecraft, or 4 active spacecraft
 - Redundancy, identical spacecraft, inter-spacecraft communications

High-fidelity simulations indicate S4 can be kept within 0.1 m of formation plane for months using small amounts of thrust out of plane.

ltem	Mass	Cont.	Allocated	
	(kg)	Factor	Mass (kg)	
Mechanical/Structure	30	30.0%	39	kg
Thermal	5	30.0%	6.5	kg
Attitude Control	7	30.0%	9.1	kg
RF Communications	5	30.0%	6.5	kg
Command & Data				
Handling	4	30.0%	5.2	kg
Electric Power	15	30.0%	19.5	kg
Propulsion	10	30.0%	13	kg
Harness	8	30.0%	10.4	kg
Spacecraft Bus Mass	84		109.2	kg
Laser Local Oscillator	3	30.0%	3.9	kg
Beam Launchers	30	30.0%	39	kg
GPS				
Receiver/Transponder	5	30.0%	6.5	kg
Instrument Thermal				
Control	10	30.0%	13	kg
Instrument Harness	5	30.0%	6.5	kg
Instrument Mass	53		68.9	kg
Observatory Dry Mass	137		178.1	kg
Desired ∆V	400	m/s	Assumed Isp	
Required Propellant Mass	35.7	kg	224	sec
Propellant Mass Provided	39.278	kg		
Observatory Wet Mass	176	kg	217	kg

		Cont.		
Item	Mass (CBE)	Factor	Allocated Mass	
Observatory Dry Mass	13	7 30.0%	178.1	kg
Observatory Wet Mass	176.	3 23.3%	217.4	kg
Number of Observatories		4		
Carrier Structure	173.	30.0%	226.1	kg
Constellation Mass	879.	D	1095.6	kg
Apogee Burn ∆V	1367.	5m/s	Assumed Isp (s)	315
Required Propellant	612.	<mark>4</mark> 30.0%	796.2	kg
Propulsion System Mass	20	30.0%	260.0	kg
Flight System Dry Mass	921.	9 30.0%	1198.5	kg
Flight System Wet Mass	1691.	5 27.2%	2151.8	kg
Launch Vehicle Capability	360	4 kg		
Dry Mass Margin	145	2 kg		
	121.2%	6		

Cost	Cost		Dev
by Phase	(FY08\$M)		Cost, %
Phase A	\$	12.5	1. 9 %
Phase B	\$	123.6	1 9 .1%
Phase C/D	\$	512.4	79.0%
Phase E	\$	27.6	
Total:	\$	676.1	100.0%

A 21st Century Test of Gravity

Optical vs. Microwave:

- Leverage advances in optical metrology from SIM & telecom boom to yield 10⁵ increase in path-length precision.
- Factor of ~30,000 improvement in state-of-art tests of GR

Simplified Experimental Approach:

 Redundant optical truss implies no need for ultra-precise drag-free environment for BEACON spacecraft

A Low Cost Experiment:

- Geocentric orbit
- Optical apertures 10–15 cm
- Conventional thrusters (monopropellant)
- Flight-heritage accelerometers
- Leverage GPS & laser tracking stations

