Indeterminacy of Quantum Geometry

Craig Hogan Fermilab and U. Chicago

Real geometry is not classical

Quantum Geometry

- Spacetime is a quantum system, not a manifold
- suppose the Planck wavelength is the smallest length

$$l_P = \sqrt{\hbar G_N / c^3} = 1.616 \times 10^{-33} \text{cm}$$

- Fundamental limit to propagation and measurement of information
- Leads to transverse fluctuations in geometry much larger than Planck lengthand measurable

Wave theory of quantum geometry

- Standard quantum field theory: geometry is classical, fields are quantized, modes are independent, "all physics is local"
- Gravitation theory suggests holographic quantum geometry: UV cutoff at the Planck length, 3D states and correlations are spatially nonlocal
- New holographic phenomenology: relative spacetime positions of events are indeterminate, defined to precision of information propagation and measurement allowed by capacity of Planck wavelength radiation
- spacetime events and paths complementary to Planck wavelength radiation (classical event~ particle, path~ray)
- Theory of spacetime indeterminacy based on wave optics: wavefunctions represent event positions

Direct measurement of quantum geometry fluctuations

- Experimental approach to small lengths/large energies has been the high energy frontier-- accelerators
- Better macroscopic position measurements by interferometers designed for gravitational wave detection (narrow wavefunction of macroscopic mass position: small Heisenberg uncertainty)
- Quantum wave geometry predicts a new detectable effect: "holographic noise"
- black hole evaporation physics--- in the lab
- Spectrum and distinctive spatial character of the noise is predicted with no parameters
- An experimental program is motivated
- CJH: <u>arXiv:0806.0665</u>, also PRD D 77, 104031 (2008)

"This is what we found out about Nature's book keeping system: the data can be written onto a surface, and the pen with which the data are written has a finite size."

-Gerard 't Hooft

Everything about the 3D world can be encoded on a 2D surface at Planck resolution (?)

Holographic Quantum Geometry: theory

•Black holes: entropy=area/4 $S = A/l_P^2 4 \ln 2$

- •Black hole evaporation
- •Einstein's equations from heat flow
- •Classical GR from surface theory
- Universal covariant entropy bound
- •Exact state counts of extremal holes in large D
- •AdS/CFT type dualities: N-1 dimensional duals

•All suggest that quantum geometry lives on 2+1 dimensional null surfaces

Beckenstein, Hawking, Bardeen et al., 'tHooft, Susskind, Bousso, Srednicki, Jacobson, Padmanabhan

A holographic world is blurry

Holographic Quantum Geometry

- Spacetime is a quantum system
- Conjecture: the world is formed by Planck wavelength null waves
- "from inside": transverse quantum fluctuations in position much larger than Planck length

$$l_P = \sqrt{\hbar G_N / c^3} = 1.616 \times 10^{-33} \text{cm}$$

Ray limit of wave optics: Rayleigh uncertainty

- •Aperture *D*, wavelength λ : angular resolution λ/D
- •Size of diffraction spot at distance $L: L\lambda/D$
- Endpoints of a ray can be anywhere in aperture, spot
- path is determined imprecisely by waves
- •Minimum uncertainty at given *L* when aperture size = spot size, or $D_{1} = \sqrt{2}$

$$D = \sqrt{\lambda L}$$

The case of a real hologram

 For optical light and a distance of about a meter,

$$D = \sqrt{\lambda L}$$

is about a millimeter

- Larger aperture gives sharper image but then photon paths and arrival positions cannot be measured so well
- If you "lived inside" a hologram, you could tell by measuring the blurring/indeterminacy

Wave Theory of Spacetime Indeterminacy

- Adapt van Cittert-Zernike theory of transverse correlation in wave optics
- theory of "fuzzy event positions"
- Complex amplitude=wavefunction
- Complex correlation=quantum correlation
- Intensity=probability
- Set wavelength to match holographic degrees of freedom

Uncertainty of transverse position

Spacetime events are not points but wavefunctions. Transverse to a null trajectory at separation L events are Fourier transforms of each other and have standard deviations of transverse position related by:

$$\sigma'\sigma = \lambda L$$

For macroscopic L the "uncertainty" is much larger than the wavelength

Controlled covariant theory based on wave optics: CJH, arXiv: **0806.0665**

Familiar examples from the world of optics

- Hanbury Brown-Twiss interferometry: correlation of intensity from distant star in widely separated apertures
- Michelson stellar interferometer: fringes from star
- Diffraction in the lab: shadow of plane wave cast by edge or aperture

All display similar optical examples of wave phenomena much larger than the waves,

 $\sigma'\sigma = \lambda L$

Set fundamental wavelength= Planck length

- Agrees with degrees of freedom, minimum wavelength from gravitation theory
- black hole evaporation, unitary behavior of gravitational systems
- Sets absolute normalization with no parameters
- No gravity: flat wavefronts, flat space

Indeterminacy of a Planckian path: diffraction limit of "Planck wavelength telescope"

spacetime metric defined by paths between events

- Complementarity: path~ ray approximation to waves
- Events on worldline ~ particle interactions with Planck wavelength radiation
- Transverse wavefunction of events displays indeterminacy formally identical to optical wave correlations
- Indeterminacy of geometry reflects limited information content of wave model

holographic approach to the classical limit

 Angles are indeterminate at the Planck scale, and become better defined at larger separations:

$$\Delta\theta(L) = (l_P/L)^{1/2}$$

 But uncertainty in relative transverse position increases at larger separations:

$$\Delta x_{\perp}^2 > l_P L$$

- Not the classical limit of field theory
- Indeterminacy and nonlocality persist to macroscopic scales

Fluctuations in quantum geometry

- Distant spacetime is only defined insofar as it can be measured locally using Planck radiation
- Distant events are fuzzy objects, not points
- Endpoints of trajectories (interaction events) are uncertain
- Indeterminacy of worldlines leads to fluctuations in measured quantities
- Statistical predictions not sensitive to model details: direct measure of fundamental information bounds

What is the best microscope for measuring quantum geometry?

LIGO/GEO: ~10⁻¹⁹ m over ~10³ m baseline

Interferometers as Planck telescopes

- Nonlocality: precise relative positions at km scales
- Fractional precision: angle < 10⁻²⁰, > "halfway to Planck"
- Transverse position measured in some configurations
- Precision: like two collisions at LHC localized at exactly the same place after a complete circuit
- Proof masses have narrow position wavefunction, measure spacetime wavefunction
- Detect holographic blurring: noise in signal stream

 But phase of beam-split signal is sensitive to transverse position of surface Beamsplitter and signal in Michelson interferometer

Signal: random phase difference of reflection events from indeterminate position difference of beamsplitter at the two events

Beamsplitter: reflection events at two times separated by L=2L₀

Measurement of transverse position of beamsplitter

 Positions of reflection events have transverse uncertainties

$$\sigma'\sigma = \lambda L$$

- Independent samplings accumulate signal phase uncertainty
- apparent arm length difference is a random variable, with variance:

$$\Delta L_0^2 = \sigma^2 + {\sigma'}^2 = 2\sigma^2 = 4l_P L_0$$

this is a new effect predicted with no parameters

"continuous measurement"~ transverse Planck random walk

- A highly interactive system mimics a random walk transverse to null direction of propagation (normal measurement): a Planck length per Planck time
- Walk in the position of bodies (e.g., beamsplitter) and not propagating radiation itself

Power Spectral Density of Fluctuations

Uncertainty in angle ~ dimensionless metric perturbation

$$\Delta\theta(L) = (l_P/L)^{1/2}$$

~ metric shear fluctuations with flat power spectral density

$$h_H^2 \simeq L \Delta \theta^2 \approx t_P$$

 h_{H}^{2} =mean square perturbation per frequency interval

(prediction with no parameters, Planck length is the only scale)

Holographic Noise

Universal **holographic noise** ~ flat power spectral density of metric **shear** perturbations:

$h \approx \sqrt{t_P} = 2.3 \times 10^{-22} \text{Hz}^{-1/2}$

- •A property of holographic quantum geometry
- •Prediction of spectrum with no parameters
- •Prediction of spatial shear character: only detectable in transverse position observables
- Definitively falsifiable
- •Contrast with more general range of possible phenomenology (e.g. Amelino-Camelia, et al.)

Holographic fluctuations do not carry energy or information

- classical gauge mode (flat space, no classical spacetime degrees of freedom excited)
- -sampling noise, not thermal noise
- Necessary so the number of distinguishable positions does not exceed holographic bound on Hilbert space dimension
- No curvature
- no strain, just shear
- no detectable effect in a purely radial measurement

Why doesn't LIGO detect holographic noise?

- EITHER holographic noise does not exist, OR:
- LIGO layout is not sensitive to transverse displacement noise (relationship of holographic to gravitational wave depends on details of the system layout)

LIGO S5 run: noise in displacement units

- Allow for lack of holographic noise from FP arm cavities
- In displacement units, estimated holographic noise is below sensitivity of last science run
- Will be detectable with enhanced/advanced LIGO

Rough but zero-parameter estimate of holographic noise in LIGO (displacement units)

CJH: <u>arXiv:0806.0665</u>

Noise in GEO600

"Mystery Noise" in GEO600

Current experiments

- Most sensitive device, GEO600, sees noise compatible with holographic spacetime indeterminacy
- other explanations, e.g. thermorefractive noise 3.6 times larger than expected in the model, need to be checked
- requires testing and confirmation!
- H. Lück: "...it is way too early to claim we might have seen something."
- LIGO: current data close but may not be sensitive enough, awaits next upgrade
- Models of holographic noise in signals of both systems can be improved

Interferometers can detect quantum indeterminacy of geometry

•Beamsplitter inserts holographic uncertainty into signal

•system with LIGO, GEO600 technology can detect holographic noise if it exists

•Signatures: spectrum, spatial shear

CJH: arXiv:0806.0665

New interferometers: beyond GW detectors

- •Spectrum: ~100 to 1000 Hz with existing apparatus
- •Higher *f* with larger laser power (above GW sources); resonant cavity limit possible
- •Test specific geometry dependence (shear character, variation with angle) with different configurations
- •Optimal designs different from GW studies
- •Different scales: atom interferometers

Program for holographic noise experiments

- Measure quantum indeterminacy of spacetime
- Measure non-pointlike, wave character of events
- Measure nonlocal quantum weirdness of spacetime metric
- Connect quantum geometry in the lab with information limits from complete fundamental theory (2+1D null projection, black hole entropy, string theory etc.)
- Clues to nature of vacuum-fluctuation gravity, quantum physics of Dark Energy

