Opportunities for space-based experiments using optical clock and comb technology

Patrick Gill National Physical Laboratory, UK

Quantum to Cosmos, Virginia, 9th July 2008

Outline

- Background to ESA studies
- Technology: recent developments & state-of-the-art performance
 - Local oscillators
 - Trapped ion standards
 - Neutral atom standards
 - Femtosecond combs
 - Optical clock comparison
- Opportunities for space missions
- Development plan for optical clocks at suitable technology readiness to move to space qualification

⁸⁸Sr⁺ ion trap (NPL)

ESA study 2006-07: optical frequency synthesizer for space-borne optical frequency metrology

Patrick Gill, Hugh Klein and Helen Margolis National Physical Laboratory

Ronald Holzwarth, Marc Fischer and Theodor Hänsch Menlo Systems GmbH

Stephan Schiller Heinrich-Heine Universität Düsseldorf

Volker Klein Kayser-Threde GmbH (KT)

ESTEC Contract No. 19595/06/NL/PM ESA Technical Officer: Eamonn Murphy

NPLO

Conclusions & Recommendations:

- Optical frequency combs now mature lab devices
- Ground-based optical clocks specs of $10^{-17} 10^{-18}$ available in near future
- Significant advance on microwave frequency best capability
- Opportunities across a range of future space mission sectors

High precision, high performance clocks, Need to work on high reliability for space

- A substantial ESA-sponsored development programme to enable optical clock technology to be better prepared for future space missions
- ESA-steer in the planning of a **future mission based on optical clocks**
- Focus the efforts of leading optical frequency metrology groups and companies to achieve a space-based optical clock demonstrator within the next decade

Development of Optical Atomic Clocks for Space

Patrick Gill, Helen Margolis & Hugh Klein National Physical Laboratory

Remit:

Draw up a viable technology development plan for OACs for space

Timescale: May – September 2008

ESTEC Contract No. 21641/08/NL/PA ESA Technical Officer: Eamonn Murphy

Technology development plan for OACs in space

- Pointers to potential future missions and associated user requirements
 benefiting from OACs
- Aim for a fit between fundamental physics & other subsidiary science mission goals
- Identify necessary parallel development activities to progress OAC sub-unit technologies to TRL 5/6, ideally consistent with next CV timeframe
- Identify a co-ordinated activity plan (with costs) involving the ESA space research community that addresses the following sub-units: Atomic reference (cold atom and single ion options) Optical local oscillator Frequency synthesis Frequency comparison
- Integration of sub-unit development into advanced prototype (by 5 years)
- Identify systems providers and ball-park cost for next stage EM

Optical Clocks: What and Why?

- Based on narrow optical transitions in atoms or ions
- Frequencies ~10⁵ times higher than microwave frequencies
- Q-factor ~10¹⁵
- Better time resolution
- Better stabilities than microwave clocks

 $\sigma(\tau) \sim \frac{1}{2\pi f \sqrt{NT_{int}\tau}}$

instability $\sigma \propto \frac{\Delta f}{f} \frac{1}{(S/N)}$

Cavity-stabilised Oscillator (Ultra-stable laser)

Reference (Narrow optical transition in an atom or jon)

Counter (Femtosecond comb)

Optical local oscillators

Cavity must be:

- Operated at a temperature where coefficient of thermal expansion α_{CTE} is close to zero;
- Isolated from sources of vibration.

Spacer:

Ultra-low-expansion (ULE) glass Length ~10 cm \rightarrow FSR ~ 1.5 GHz

Mirrors: optically contacted to spacer Refl. > 99.998%, finesse ~ 200,000

State-of-the-art LO performance

Benchmark: ULE-cavity-stabilized dye laser at NIST linewidth ~ 0.2 Hz, rel. frequency instability 3x10⁻¹⁶ at 1 s

Other systems:

Nd:YAG laser ~ 0.4 Hz (NPL, JILA, ...) Diode lasers ~ 0.4 – 1 Hz (PTB, NIST, NPL, ...) Ti:sapphire ~ 5 Hz (NPL)

Recent developments: Vibration-insensitive cavities

JILA vertical cavity

Ludlow et al. Opt. Lett. 32, 641 (2007)

Webster et al. PRA 75, 011801 (R) (2007)

support points PTB horizontallymirror blind holes Nazarova et al., Appl. Phys. B 83, 531 (2006)

Sensitivity to vertical vibrations up to 1000 times lower than standard cylindrical cavities

Thermal noise limit

Trapped ion optical clocks

- Laser-cooled single trapped ion
- High-Q optical clock transitions (10¹⁵ or higher)
- Long interrogation times possible
- Electron shelving scheme \rightarrow high detection efficiency

¹⁷¹Yb⁺ trap (PTB)

⁸⁸Sr⁺ trap (NPL)

Low perturbation environment:

- No 1st-order Doppler shift (& minimum 2nd-order shift)
- Field perturbations minimised at trap centre
- Background collision rate low

Ca+ trap (Innsbruck)

Ion clocks: candidate systems

lon	Clock transition	λ / nm	Natural linewidth / Hz	Best experimental linewidth / Hz	Frequency measurement uncertainty / Hz	Laboratory
¹⁹⁹ Hg+	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	282	1.8	6.7	0.7	NIST
¹⁷¹ Yb+	² S _{1/2} ⁻² D _{3/2}	436	3.1	10	2.2	PTB, NPL
⁸⁸ Sr+	² S _{1/2} ² D _{5/2}	674	0.4	5	1.7	NPL, NRC
⁴⁰ Ca+	² S _{1/2} ^{_2} D _{5/2}	729	0.14	15	0.9	Innsbruck, CRL, Marseilles
¹¹⁵ In+	¹ S ₀ – ³ P ₀	237	0.8	170	230	MPQ / Erlangen
²⁷ Al+	${}^{1}S_{0} - {}^{3}P_{0}$	266	8 x 10 ⁻³	8.4	0.7	NIST
¹⁷¹ Yb+	² S _{1/2} ² F _{7/2}	467	~10 ⁻⁹	40	11	NPL, PTB

Ion clocks: observed *Q*-factors & absolute frequency measurements

 199Hg+ standard:

 observed $Q \approx 1.6 \times 10^{14}$ Rafac et al., PRL 85, 2462 (2000)

 $f = 1\ 064\ 721\ 609\ 899\ 145.30(69)$ Hz

 (rel uncertainty 6.5×10^{-16})

 Stalnaker et al., Appl. Phys. B 89, 167 (2007)

¹⁷¹Yb⁺ quadrupole standard

observed $Q \approx 7 \times 10^{13}$ Peik et al., PRL 93, 170801 (2004) $f = 688\ 358\ 979\ 309\ 307.6\ (2.2)\ Hz$

(rel uncertainty 3.2 × 10⁻¹⁵) *Tamm et al., IEEE TIM. 56, 601 (2007)*

88Sr⁺ standard:

observed $Q \approx 5 \times 10^{13}$ Barwood et al, IEEE TIM. 56, 226 (2007) $f = 444\ 779\ 044\ 095\ 484.2\ (1.7)\ Hz$ (rel uncertainty 3.8×10^{-15}) Margolis et al., Science 306, 1355 (2004)

Ion clocks: frequency ratio measurements

Optical frequency ratios can be measured much more accurately.

Ion clocks: stability and reproducibility

Comparison of ¹⁹⁹Hg⁺ and ²⁷Al⁺ standards: instability 4 × 10⁻¹⁵ τ ^{-1/2} for 20 s ≤ τ ≤ 2 000 s

Rosenband et al., Science 319, 1808 (2008)

Comparison of two ¹⁷¹Yb⁺ standards: fractional frequency difference 3.8(6.1) × 10⁻¹⁶

Schneider et al., Phys. Rev. Lett. 94, 230801 (2005)

Peik et al, J. Phys. B: At.Mol.Opt. Phys 39,145 (2006)

Neutral atom lattice clocks

- ¹S₀ ³P₀ clock transitions in eg Sr, Yb, Hg (mHz natural linewidth)
- Atoms confined in an optical lattice
- AC Stark shift eliminated by operating at "magic" wavelength
- *N* atoms, stability $\propto N^{1/2}$
- Ultimate goal: 3D lattice with 1 atom per site

Lattice clocks: absolute frequency measurements

Lattice clocks: systematic uncertainty & stability

⁸⁷Sr standard:

Fractional frequency uncertainty of 10⁻¹⁶ demonstrated by remote optical comparison with a Ca standard.

Ludlow et al., Science 319, 1805 (2008)

Poli et al., arXiv:0803.4503v1 (2008)

IIA

NIST

Improvements in optical frequency standards

Femtosecond combs: optical clock operation

- \rightarrow millions of modes across visible/IR with known frequency
- Uncertainty between combs locked to the same optical ref: ~1.4 x 10⁻¹⁹ (*Ma et al, Science 2004*)
- • Comb hardware: fs laser (eg TiS, Fibre laser) + microstructure fibre

Overall system performance

Optical clock comparison by fibre: state of the art

Compare frequency transfer by fibre with satellite MWL between high performance remote clocks to validate MWL for transportable ground clocks

Opportunities for OAC space missions in fundamental physics

Development of quantum theory of gravity implies violations of standard General Relativity principles such as the Einstein Equivalence Principle:

GR effects small, but space environment offers variable gravity, large distances, high velocities and low accelerations and freedom from Earth seismic noise. Optical clocks most sensitive to gravitational effect through effect on frequency

Tests of Local Position Invariance (LPI)

- → Absolute gravitational redshift (GRS) measurements due to $\Delta U/c^2$ orbit change in Earth potential
- \rightarrow Absolute GRS measurements of solar potential
- \rightarrow Null GRS tests between dissimilar clocks in changing potential

Tests of Local Lorentz Invariance (LII)

→Test of time dilation between ground & space clock (Ives-Stilwell)

→ Cavity / OAC freq comparison in orbiting arrangement (Kennedy-Thorndike)

<u>Measurement of space-time curvature</u> (Shapiro time delay)

$$\frac{v_1 - v_2}{v} = \frac{U(r_1) - U(r_2)}{c^2}$$

$$\frac{v_A}{v_B} = const.$$

EGE (Einstein Gravity Explorer)

Scientific goals:

- Tests of fundamental physics (gravitation)
 (Gravitational redshift, variation of fundamental constants, Lorentz invariance + + + +)
- Spin-off to other fields

(Determination of earth's geopotential, comparison of distant terrestrial clocks at the 10⁻¹⁸ level, technology demonstration)

Payload:

- Two atomic clocks (one optical, one microwave)
- Optical frequency comb
- Microwave link to earth

Class M Cosmic Vision proposal: Schiller, Tino, Gill, Salomon *et al.* (2007)

Possible EGE Mission Scenario

Schiller 2007

- Orbital phase I

 (~ 1 year duration, highly elliptic orbit)
 - Test of Local Position Invariance and of grav. redshift

- Orbital phase II (geostationary, several years duration)
 - Master clock for earth and space users
 - Geophysics

SAGAS (Search for Anomalous Gravitation using Atomic Sensors)

Scientific goals:

Class L Cosmic Vision proposal: Wolf *et al*. (2007)

- Tests of fundamental physics (gravitation) in deep space (universality of gravitational redshift, local position invariance, parameterised post-Newtonian gravity, Pioneer anomaly, low frequency gravitational waves, variation of fundamental constants)
- Exploring the outer solar system (Kuiper belt mass distribution and total mass, planetary gravitational constant for Jupiter)

Payload:

- Trapped ion optical frequency standard
- Cold atom accelerometer

• Laser link for ranging, communication & frequency comparison

OAC benefits for Geoscience

Direct measurement of the earth's geopotential with high resolution by using the gravitational redshift.

Comparison of ground clocks with 10⁻¹⁸ accuracy

Measurement of potential differences with equivalent height resolution of 1 cm

Use of airborne clocks referenced to master should allow improved spatial resolution & faster data acquisition

Navigation: optical clocks for future GNSS

Benefits of using optical clocks in both satellite & ground segments:

- Improved timing / location resolution
- Improved integrity / autonomy of satellite segment
- Better correction for atmospheric and multi-path effects

Scenario	Satellite time	System time	Theoretical error over 2 hours / ns
Ι	Rubidium clock	Optical clock	0.59
П	Passive maser	Optical clock	0.11
III	Optical clock	Active maser	0.14
IV	Optical clock	Optical clock	0.002

Simulations by Institute of Communications & Navigation (DLR)

ESA study contract 19837/06/F/VS

PIB

NPLO

Optical "master" clock (OMC) in space

- Requirement for high accuracy (10⁻¹⁸ level) intercomparison of remote ground-based optical clocks
- ACES MWL target to approach 10⁻¹⁷ @ several days takes time
- Common-view comparison via optical master clock
- Geostationary orbit for ease of orbit determination and reduction of tracking requirements
- Altitude determination of master clock to 40 cm required for 10⁻¹⁸ accuracy (laser ranging sufficient)
- Also available as a clock reference for satellites in lower orbits

OAC mission blueprint:

2ndary goals

- Primary goal \rightarrow Fundamental physics (Tests of GR eg EGE)
 - \rightarrow Geoscience (high spatial resn of geopotential)
 - \rightarrow GNSS (input to future GNSS architectures)
 - \rightarrow Optical master clock (high acc remote clock comparison)

Optical clock parallel-path technology development to reach TRL 5/6 by next CV call + 3 years

Benefits of a parallel track development

- Choice of particular clock may be mission dependent
- Better readiness for future Cosmic Vision calls
- Reduced time and improved efficiency to reach EM /FM
- Continuous improvement, benefiting technology development needed for missions
- Common technical sub-packages capable of wide application
- Spin-off to high profile ground-based science (eg time variation of fine structure constant; m_e/m_p)

Optical clock sub-unit technology requirements

From: Proposal EGE (2007)

Laser cooling package

cf ACES development: 20 kg, 36 W, 30 liters Air/vac operation, 10-35 °C

4 ECDL, 4 DL, 6 AOM, 30 PZT 11 motors, 6 photodiodes 8 peltier coolers Potential for reduced package for ion clock: eg 1 ECDL + single pass doubling + aux DFBs + redundancy units

Single pass doubling in PPKTP 150 mW 844 nm diode → 0.5 mW of Sr+ 422 nm cooling light

Ion clock physics package

⁸⁸Sr⁺ ion trap labdevelopment ~10 litre volume

Microtrap development based on gold-coated ceramic wafers (Ulm) or gold-coated single silica-on-silicon wafer (NPL)

Femtosecond comb package

Transmissivity of an Er doped fibre (25 mm) irradiated with 2.6 MeV protons of a flux of 1.9 10^{11} protons / cm² s (from Predehl 2006).

OAC space clock issues

- Acceleration dependencies
- Influence of cosmic radiation
- Prolonged unattended & maintenance-free operation
- Mass, volume & power
- Operation in vacuum
- Internal spacecraft environment
- External perturbations

pe of optical powe	r Physics	Physics	Support	Electronics	Total mass
ock (W)	volume	package	structure	mass	
	(litres)	mass	mass		
Ion clock 60	50	50 kg	20 kg	30 kg	100 kg

Conclusion

- Proposal for a technology development programme
- managed through ESA TEC-MME Directorate
- involving development activities across the ESA research community in a co-ordinated way
- → Input to FPAG road-map construction

→ added resource (if successful) for ESA Science / Fundamental Physics strategy for optical clock-based future mission scenarios

