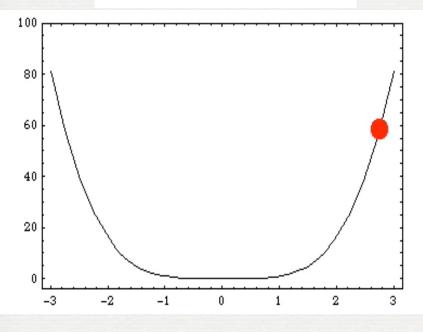
GRAVITATIONAL WAVES AND THE END OF INFLATION

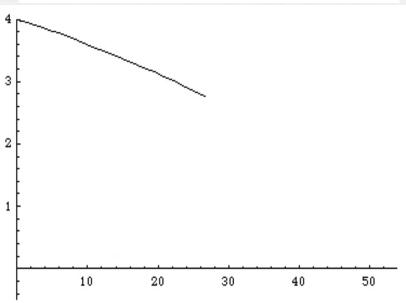
Richard Easther (Yale)

OUTLINE

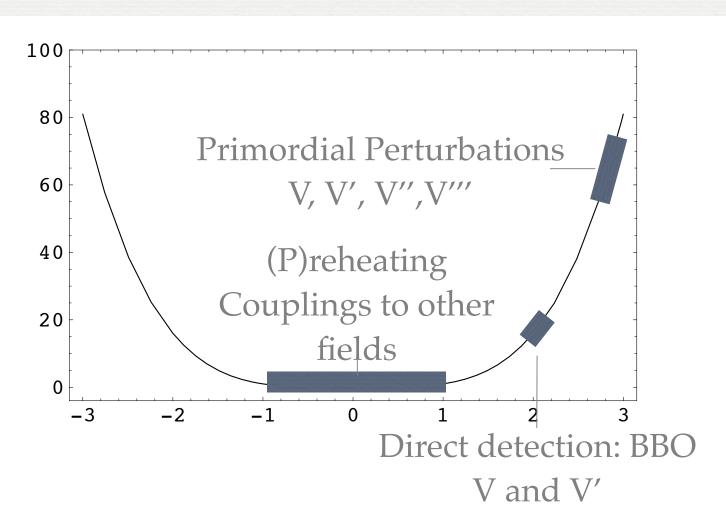
- Inflation: a reminder
- Ending inflation: Parametric resonance / preheating
 - [SKIP: technical calculation]
 - Gravitational wave generation
- Generic properties of gravitational wave signal
- Implications for future experiments

Khlebnikov and Tkachev (1997); RE with Giblin, Lim, Finkel, Swanson, Roth


INFLATION: A REMINDER


- Period of (quasi)-exponential expansion
 - Driven by slowly evolving scalar field
 - Dynamics fixed by field's potential
 - Solves "standard" cosmological problems
- Sets initial conditions for hot big bang
 - Thermalized universe, with small perturbations

CARTOON VERSION



INFLATIONARY OBSERVABLES

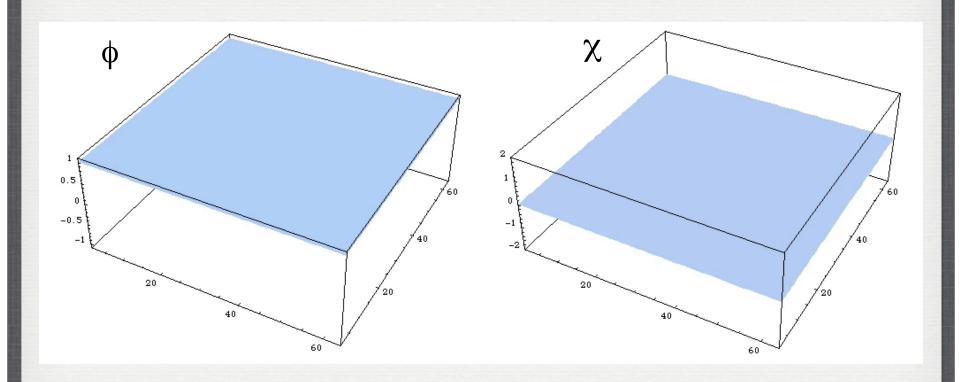
ENDING INFLATION

- Inflationary universe cold and empty
 - "Reheat" universe to set up hot big bang
- Originally: tree level couplings to inflaton
 - Couplings necessarily weak
- Parametric resonance / preheating
 - Non-perturbative; "stimulated emission"

PARAMETRIC RESONANCE: A QUICK SKETCH

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi - \frac{1}{2} m^2 \phi^2 - \frac{g}{2} \phi^2 \chi^2$$

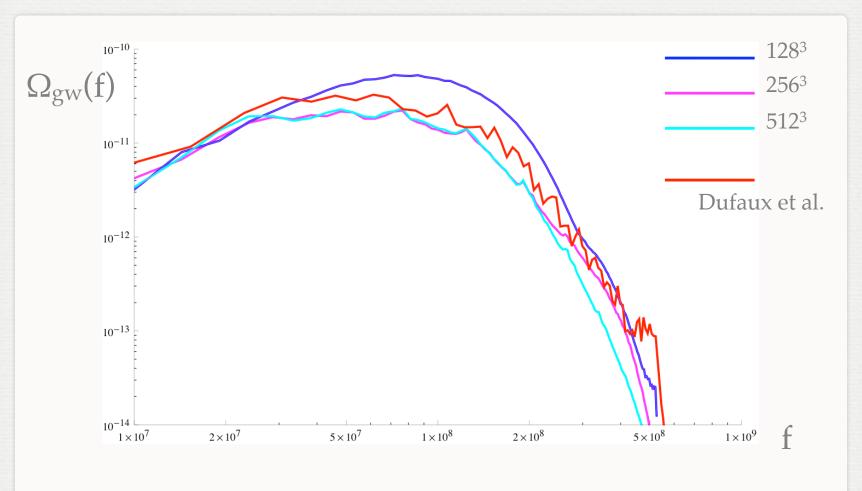
- \blacksquare ϕ is the inflaton field, χ coupled to inflaton
 - Perturbations in χ ; canonically quantize χ_k


$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2} + m_{\chi}^2 + g^2\phi^2\right)\chi_k = 0$$

- Forced, damped oscillator (~Mathieu equation)
 - Exponetially growing solutions

PARAMETRIC RESONANCE: FOR BEGINNERS

SIMULATION



Fields rescaled.

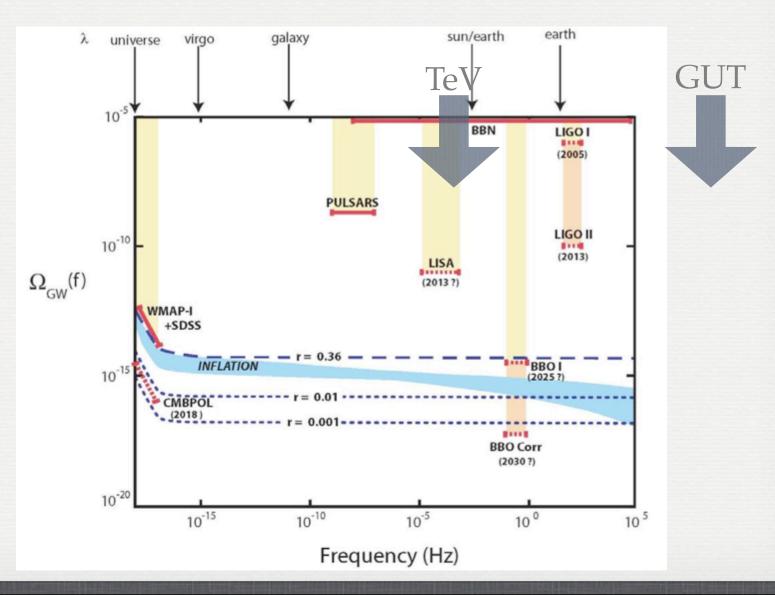
PRODUCTION OF GRAVITATIONAL WAVES

- Inhomogeneous universe; non-zero quadrupole
 - Sourced by gradient terms in fields (look at $T_{\mu\nu}$)
 - cf. Early universe phase transitions (first order EW)
- Assume spacetime rigid (ignore backreaction)
 - Need full nonlinear equations for scalar fields
 - **E**volve transverse-traceless $h_{\mu\nu}$ (sourced by $T_{\mu\nu}$)
 - Solve alongside evolution of φ and χ

QUARTIC POTENTIAL (TOY MODEL)

COMMENTS...

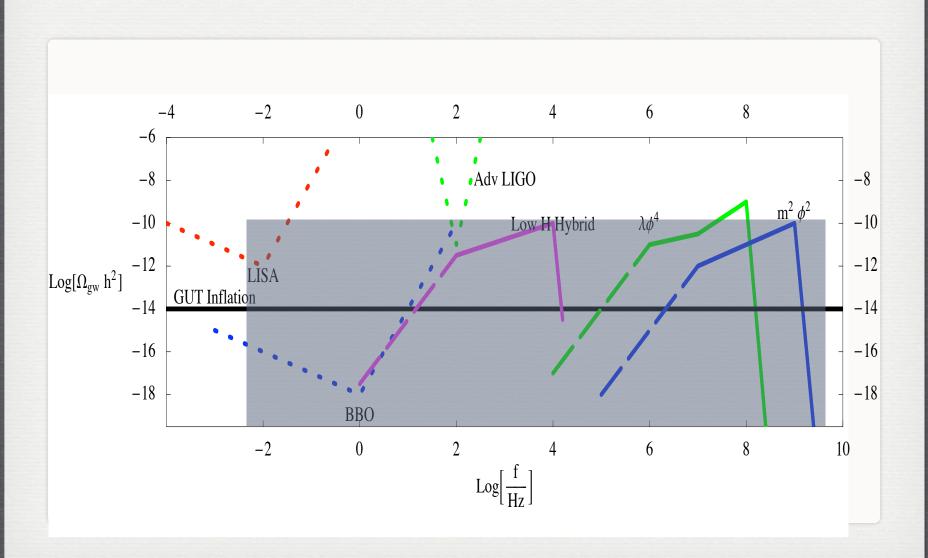
- Nontrivial numerical problem
- Four independent calculations; all well-matched!
 - Easther, Giblin & Lim: *astro-ph*/0612294
 - Dufaux et al. *astro-ph*/0707.0875
 - Garcia-Bellido and Figueroa: *astro-ph*/0707.0839
 - Price and Siemens: *astro-ph*/0805.3570


PEAK FREQUENCY (LOCATION)

- Hubble size at end of inflation: $1/H_{end} \sim (V_{end})^{-1/2}$
 - $H^2 \sim \rho \sim V_{inflation} \sim T_{max}^4$ (0-0 Einstein equation)
 - Growth since thermalization: $\sim T_{max}/T_{CMB}$
- Overall scaling: Peak location ~ 1/T_{max}

- GUT scale inflation: cm m today; MHz GHz
- Inflation at 10 TeV: $\sim 10^7 \, \text{km} \sim 10^{-2} \, \text{Hz}$

EXPERIMENTS


HEIGHT OF PEAK

- Upper bound: ~25% of total in *gradient* energy
 - GW background scales like radiation
 - $\square \Omega_{gw}$ fixed until matter domination
 - Independent of inflationary scale!!
 - Maximal $\Omega_{\rm gw} \sim 10^{-10}$ today (large signal)
- Very model dependent (upper bound, verified by explicit calculations)

STRUCTURE OF PEAK

- Depends on underlying resonance structure
 - Many possibilities available
 - Including broad resonance (hard numerically)
- Sharp cutoff possible at high frequency
- Potential for long ~k³ tail at low frequencies
- Also bubble collisions, vector and fermionic modes

SUMMARY PLOT

GRAVITATIONAL WAVE BACKGROUNDS

Primordial	Preheating
Quantum source	Classical source
Scale Invariant	Peaked at "human" scales
Low H: Low amplitude	Low H : redder peak
Always generated	Strongly model dependent
Amplitude bounded by CMB	Amplitude possibly large
$\Omega_{gw,inf} h^2 < 10^{-14}$	$\Omega_{\rm gw}h^2\lesssim10^{-10}$

REMARKS

- Still work in progress
 - But opens new window on inflationary physics
 - Link between inflation and "everything else"
- Present status: "Existence proof"
 - Preheating can generate background
 - Need to understand if this signal is generic
 - Preheating "free" in most (?) models of inflation

REMARKS

- Preheating involves tough physics
 - Nonlinear, nonequilibrium, in expanding universe.
 - But code(s) now mature and well-tested
- Other early universe gravitational wave sources
 - Bubble formation, phase transitions
 - Code will work for any stochastic background

QUANTUM TO COSMOS: TAKE-HOME MESSAGES

- Signal depends on energy scale of inflation
 - GUT scale inflation: ~GHz GW signal
 - Also be visible in CMB B-mode / BBO
 - Hard to find good models of GUT scale inflation
- Most string models at lower scales?
 - This signal gets easier to see

QUANTUM TO COSMOS: TAKE-HOME MESSAGES

- Need to understand whether preheating is generic
 - But not "cooked up" for gravitational waves

- Any gravitational waves are exciting
- Learn / confirm energy scale of inflation (huge!)
- Connect inflation to "rest of physics" (string/GUT?)