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Introduction

 ESA’s Mercury Planetary Orbiter
(MPOQO) selected an international
Radio Science Team to:

— Determine the gravitational field of
Mercury and investigate the interior
structure

—» — Investigate aspects of the theory of
general relativity

« Radio Science technique utilize
highly stable (low noise) radio
links between spacecraft and
ground stations
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Testing gravitational theories

Deflection of light
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Simulation Results

Parameter Present Accuracy | MORE Accuracy
2.3 %107 2 x 1076
B 1.2 x 10 7 %107
n 5x104 2 x 107
o 1 x 10 7.8 x 1070
Solar J, 4% 10°® 4.8 x 1077
Gdot/G 9x10-13 per year | 3x10-13 per year




Simulations show

Results are achievable with range and range-rate
(Doppler) measurements at X- and Ka-band
simultaneously

Ka-band ranging accuracy to 20 cm
Range-rate accuracy to ~ 3 microns/s at 1000 s

Gamma 1n cruise-phase solar conjunction with
quiet spacecraft (no engine pulsing)

Other parameters 1n one year of orbital phase
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Classification of Noise Sources

Instrumental: random errors in hardware
systems

Phase fluctuations in link

Electronic components

Noise of frequency standard

Antenna mechanical noise

Dynamical:

Un-modeled bulk motion of spacecraft or grounc
station

Propagation:
Solar Wind

Ionosphere
Troposphere

Systematic errors

Transponder
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MORE Measurements!

The range & range rate between spacecraft and ground stations

— Removing the effects of the plasma along the path by means of a multi-
frequency (X- and in Ka-bands) links

The non-gravitational perturbations acting on the spacecraft, by
means of the accelerometer

The absolute attitude of the spacecraft, in a stellar frame of
reference, by means of star trackers

The angular displacement, with respect to previous tracking
passes, of surface landmarks, by means of pattern matching
between images



» Ka-band Transponder
» X-band Transponder
» Accelerometer

X-band Uplink
Ka-band Uplink
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Ka-band Downlink
(ref. Ka-band uplink)

Ka-band Downlink
(ref. X-band uplink)

* Transmitter for X and Ka band

* Receivers for X and Ka band

» Advanced Ranging Instrument

» Advanced Water Vapor Radiometer
* Pointing at Ka band

*» Frequency and Timing Reference




Why Ka-band

One-way propagation
noise at

S-, X-, and Ka-bands as
function of angular
distance from the Sun
(developed by J.W.
Armstrong, published in
Asmar et al., 2005)
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Method Successfully Demonstrated by Cassini

B.Bertotti, L.Iess, P. Tortora, “A test of general relativity using radio links with the

Cassini spacecraft” Nature, 425, 25 Sept. 2003, p. 374
GR signal and GR signal + residuals (Cassini SCE1)
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Plasma noise in the X/X, X/Ka, Ka/Ka links and the
calibrated Doppler observable

Daily Allan deviation @1000s, Cassini SCE1
Minimum impact parameter: 1.6 R, (DOY 172)

1e-10 [

te-11 |

wn
(e
S e12
®
o)
.S
> 1e13 | x
3 i xX \ T
§ K i I R *
= B .. i B B
. * = " Bowm, g . - ‘ il
te-14 b g -
1.5 um/s === o
1e-15 ' : : :
160 165 170 175 180 185

DOY - SCE1 2002



Cassini Firsts:

Coherent Ka-band
links in deep space

Simultaneous S, X,

and Ka links

TRANSMITTER

Cassini Meets Marconi

OPEN LOOP

SUBSYSTEM

RCVR/RECORDER

Q

CLOSED LOOP

» RCVR/RECORDER

SUBSYSTEM

DSS

Q

K,-BAND sé’f&T ENABLE|
TRANSLATOR | TRANSMITTERS .
— K,-BAND NO INHIBIT
¥ AUXILIARY
— S-BAND YES OSCILLATOR
3
ON OFF RCVR
IN LOCK?
X-BAND TWNC uso
X-BAND
CASSINI

FREQUENCY
AND TIMING
SUBSYSTEM

BepiColombo improves on
Cassini with:

. Accelerometer

 Ka-band ranging
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Example: Cassini Data Calibration
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Time (second past 0:00:00 UTC of DOY 185/2002)

Doppler Quality from
three links from Cassini
Radio Science

For illustration only
Improvements over X/X

« X/K40% (this link
only back-up)

« K/K factor of 16

« K/K calibrated using
X/X not shown



Tropospheric Calibration

The 34-meter diameter tracking
Station at NASA’s Deep Space
Network at Goldstone, California,
With advanced Radio Science

Instrumentation to support Juno

The Advanced Water-Vapor
Radiometer, part of the a calibration
System for tropospheric path delay



Freq Resid [Hz]

Tropospheric Calibration Example

blue: plasma calibrated freq reisd
green: plasma & amc calibrated freq resid
0.06 T T T T T T

* Doppler Quality from
004 & SCE1 160 X/X - Cassini Radio Science

» Blue curve illustrates
increased water-vapor
contribution at low
elevation angles
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« Green curve illustrates
the same Doppler
residuals after applying
the water-vapor
radiometer calibration
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Other Calibrations: Planet’s Gravity

FLOW DIAGRAM FOR GRAVITY DATA
REDUCTION
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The challenge:
An Advanced Ranging Instrument

Deep space range measurements are typically based on sequential procedure

Ranging signal phase modulates the uplink carrier; spacecraft transponder
demodulates and recovers and retransmits to ground by phase modulating
the downlink carrier

— The tone/code at highest frequency defines the accuracy while the others
are sequentially applied for ambiguity resolution

A new design utilizes Ka-band uplink and downlink to minimize the largest
error source due to interplanetary plasma

— PN ranging; 24 MHz bandwidth for station exciter system; utilizes an
open-loop receiver

— More precise and frequent calibration of delay in electronics
— Etc.



Overview of Proposed
Advanced Ranging Instrument

Modified

New

Downlink

Ka-band
Exciter

Multi-band
Ranging
Assembly

Uplink
Ranging
Assembly




Conclusion

BepiColombo will provide excellent science with relatively inexpensive
instrumentation

Same instrumentation used for geodesy/geophysics and GR
Results available after its first year of nominal mission

BC-MORE will reach the limits of the microwave instrumentation for
interplanetary radio links

Team “invented* a system a decade ago for improved Range-rate
— ~3microns/s at 1000 s; demonstrated by Cassini

Now “invented* a system for improved Ranging
— ~20 cm; yet to be demonstrated

Pushing limits of technology in tracking and Radio Science benefits
all future deep space missions



