

Ground testing of free-fall for LISA Pathfinder, LISA, and future space missions

William Joseph Weber Università di Trento / INFN LISA / LISA Pathfinder Project

Quantum to Cosmos Workshop Warrenton, Virginia, 7 July 2008

Purity of free-fall critical to low frequency LISA sensitivity and LISA science

Low frequency acceleration noise determines how well, how far, and how early we will observe black hole mergers.

• do we see the merger for long enough to pinpoint it and to search with optical telescopes (1 degree)?

Stray forces and drag-free control

Spacecraft itself – and particularly GRS – potentially dominant source of force noise
TM charge, stray electrostatic fields, sensor back-action, thermal gradient effects

The "path" to LISA free-fall

LISA Pathfinder (2010)

- 30 cm arm with 2 TM and 1 SC
- Test free-fall to 30 fm/s²/Hz^{1/2} at 1mHz
- true pathfinder for space
 experiments demanding free-fall
 (EP, time delay, geodesy)

Ground testing of small forces on TM inside GRS (torsion pendulum)

- pre-mission verification of noise model
- testing of in-flight noise mitigation / calibration / measurement techniques
- •current upper limits on unknown surface forces below 100 fm/s²/Hz^{1/2} at 1 mHz
- dedicated tests of known noise sources

TM suspended as torsion element inside GRS

Gravitational Reference Sensor Design

- Defines TM environment
- Provide nm/Hz^{1/2} measurement on all axes
 - 10 pm/Hz^{1/2} interferometer used on *x* axis
- Provides electrostatic voltages (force, measurement)

Capacive GRS design for LISA PF / LISA

- 46 mm cubic Au / Pt test mass (1-2 kg)
- 6 DOF "gap sensing" capacitive sensor
- Contact free sensing bias injection
- Resonant inductive bridge readout (100 kHz)
- ~ 1 nm/Hz^{1/2} thermal noise floor
- Audio frequency electrostatic force actuation

\rightarrow avoid DC voltages

- Large gaps (2 4 mm)
 - \rightarrow limit electrostatic disturbances
- High thermal conductivity metal (Mo) / sapphire construction
 - \rightarrow limit thermal gradients

Ground testing of free-fall with LISA / LISA PF GRS

Mo / Shapal (2 mm)

Mo / Shapal EM (4 mm)

Mo / Sapphire LPF EM (4 mm) LISA PF design!

1-mass torsion pendulum (torques)

4-mass torsion pendulum (direct force sensitivity)

Autocoll mator be

- near (< 2 in power) Brownian noise for frequency decade around 1 mHz \rightarrow true excess?
- excess at lower frequencies (coupling to environment? Sensor itself?)

Torsion pendulum upper limits on GRS force noise:

• excess at higher frequencies – rotational motion of apparatus (order 10 nrad/Hz^{1/2})

Upper limits on GRS force noise: averaged data for Mo / Sapphire Average of 32 48000 s windows (6 weekends of data)

Average confirms slight excess torque noise around 1 mHz \rightarrow roughly 50 % in power

Upper limits on GRS force noise: conversion from torque \rightarrow force (acceleration)

Division by armlength 10.75 mm \rightarrow ½ separation electrodes (electronics back-action) For uniformly distributed forces on all TM faces \rightarrow would use 23 mm

Upper limits on GRS force noise: Comparison Mo/Shapal sensor (green) and Mo/sapphire (blue)

Observe roughly same force excess with:

- Different sensor materials, coating
- Different electronics (ETHZ EM for LPF / homemade UTN)
- Same fiber

Current force noise and electrostatic noise measurements limited by force resolution...

High Q fused silica fiber (35-40 micron diameter) Collaboration with U. Glasgow (S. Rowan, A. Hepstonstall)

Wavefront sensing interferometric readout

An improved torsion pendulum for higher sensitivity force measurement

Possible improved sensitivity \rightarrow factor 10

Torsion pendulum with fused

Direct force noise upper limits with 4-TM pendulum

100 fN /Hz^{1/2} level near 1 mHz

Total LISA stiffness budget:

~ 1000 nN / m

- Unexpected stiffness likely not an issue for LISA (4 mm gaps!)
- LISA Pathfinder will perform full stiffness measurement (including gravity gradients)

Noise source: stray low frequency electrostatics

TM charge QStray electrostatic potentials δV

$$k = -\frac{\partial F}{\partial x} = -\frac{1}{2} \sum_{i} \frac{\partial^2 C_i}{\partial x^2} \left(V_i - V_{TM} \right)^2 \qquad \left\{ \begin{array}{c} \propto Q^2 \\ \propto \left\langle \delta V^2 \right\rangle \end{array} \right.$$

Electrostatic stiffness

$$F = \frac{Q}{C_{TOT}} \sum \frac{\partial C_i}{\partial x} \, \delta V_i \qquad \begin{cases} S_F^{1/2} = \frac{\sqrt{2e^2 \lambda_{EFF}}}{\omega C_T} \left| \frac{\partial C}{\partial x} \right| \Delta_x \\ S_F^{1/2} = \frac{\langle Q \rangle}{C_T} \left| \frac{\partial C}{\partial x} \right| S_{\Delta_x}^{1/2} \end{cases}$$

Random charge noise mixing with DC bias (Δ_x)

Noisy average "DC" bias ($S_{\Delta x}$) mixing with mean charge

$$S_F^{1/2} = \sqrt{\sum \left|\frac{\partial C_i}{\partial x}\right|^2} \,\delta V_i^2 S_{\delta V_i}$$

Noisy "DC" biases interacting with themselves

Noise source: Cosmic ray charging

- Randomly arriving charged particles interact with any net field to produce force noise
- Expect $\lambda_{EFF} \simeq 1000 + e/s$ [Araujo, 2004]

• Calculated and measured force noise with large photoelectric currents (+/- 12000 e / s) and large applied field (Δ_{ϕ} = 12 V)

- Measurement and compensation of DC bias to within Δ_{φ} < 1 mV
- uncompensated 50 mV, Mo/sapphire sensor

Still needed: test of compensation at mV level with true TM charge modulation (not TM potential modulation)

Noisy DC bias interacting with TM charge

Rotational measurement of DC bias fluctuations with Mo – sapphire sensor over 3 days

Measured noise in stray "DC" biases

(Mo – shapal sensor)

Measured noise in stray "DC" biases

Measured noise in stray "DC" biases

- No excess voltage fluctuation noise observed above 0.1 mHz
- 1 σ -limit of measurement: 200 μ V/ Hz^{1/2} white noise near 0.2 mHz
- fit to $1/f^{3/2}$ excess at lower frequencies

Noise budget for charge – stray voltage interaction

NB: "worst case" for stray voltage fluctuations is measurement limited (true noise likely falls off with increasing frequency)

Thermal gradient-induced forces

- dF/d Δ T ~ 100 pN / K → need S $_{\Delta T}^{1/2}$ < 10 μ K / Hz^{1/2}
- outgassing hard to predict → need a measurement

- verify (p/T) dependence of radiometric effect
 ▶ quantitative agreement with model (30% uncertainty in temperature distribution)
- Observe small outgassing effect

➤radiation pressure and outgassing not threatening to LISA goals

•100 pN / K remains conservative estimate
 ➤ need 10⁻⁵ K/Hz^{1/2} temperature difference stability

Thermal gradient-induced forces: 4-mass torsion pendulum translational force measurement

(preliminary results)

→ Direct measurement of force coupling $dF_x/d\Delta T$ relevant to LISA force noise

 \rightarrow Much easier analysis of temperature distribution

Preliminary results:

- Verify radiometric model (10%)
- Outgassing observed (pre-bake)
 → Zero pressure data increase faster than radiation pressure's T³
- Measure roughly 100 pN/K at 10⁻⁵ Pa / 25 C

→ LPF will allow an in-flight measurement of thermal gradient effects

Measurement of coupling with thermometers and heaters

 \rightarrow LPF will characterize spacecraft thermal environment

Josep Sanjuàn, IEEC

ΙΕΕϹ

•Discrimination/subtraction of possible thermal effects

• Can characterize SC thermal environment at LISA's 10 μK/Hz^{1/2} level

•Thermometers can be re-used for LISA

LISA Pathfinder: Performance limited by 2 TM in 1 SC \rightarrow applied forces

- SC can only follow 1 TM along x (2 TM, 1 SC)
- Any differential DC acceleration must be balanced by applied (electrostatic) forces
- Noise in applied voltage gives noisy force

$$F \propto V^2$$

 $S_F^{1/2} = 2FS_{\delta V/V}^{1/2}$

 Local SC gravity modelled and balanced to 100 pico-g level

• Actuation voltage carrier amplitude stable to 3 ppm/Hz^{1/2}

(electronics Contraves Space, test U. Trento / ETH Zurich)

ESA LTP Collaboration

Trento LISA Team

Stefano Vitale (LPF PI)

Matteo Benedetti, Daniele Bortoluzzi, Antonella Cavalleri, **Giacomo Ciani**, Rita Dolesi, Mauro Hueller, **Daniele Nicolodi**, **David Tombolato**, **Peter Wass**, Bill Weber