N=8 Supergravity at three loops and beyond

Z. Bern, L.D., R. Roiban hep-th/0611086

UCLA workshop, "Is N=8 Supergravity Finite?"
December 12, 2006

Outline

- Review power-counting inferred from iterated

2-particle cuts

- "No triangle" structure hypothesized at one loop, combined with higher-particle cuts, suggests that this power counting is too conservative, missing cancellations at 3 loops and beyond
- What can we say about the full 3 loop amplitude?
- Nonplanar topologies allowed by no-triangle hypothesis
- Information from nonplanar, "non-rung-rule" contributions to $\mathrm{N}=4$ super-Yang-Mills theory
- Some analysis of 3-particle cuts

Unitarity and N=4 SYM

Many higher-loop contributions to $g g \rightarrow g g$ scattering deduced from a simple property of the 2-particle cuts at one loop

Bern, Rozowsky, Yan (1997)

Leads to "rung rule" for easily computing all contributions which can be built by iterating 2-particle cuts

Unitarity and N=8 Supergravity

Using KLT relations,
Kawai, Lewellen, Tye (1986)
$N=8$ supergravity 4-point amplitudes are "squares" of $N=4$ SYM amplitudes
$\rightarrow \mathrm{N}=8$ 2-particle cutting equation:

Bern, LD, Dunbar, Perelstein
Rozowsky (1998)
$\sum_{N=8 \text { states }} M_{4}^{\text {tree }}\left(-\ell_{1}, 1,2, \ell_{2}\right) \times M_{4}^{\text {tree }}\left(-\ell_{2}, 3,4, \ell_{1}\right)$

Leads to $N=8$ rung rule:

Ladder diagrams (Regge-like)

In N=4 SYM

$$
\text { st } A_{4}^{\text {tree }} \times s^{L-1}
$$

In N=8 supergravity
stu $M_{4}^{\text {tree }} \times s^{2(L-1)}$

Extra s^{L} in gravity from "charge" = energy

More UV divergent diagrams

$$
\begin{aligned}
& \mathrm{N}=4 \mathrm{SYM} \\
& \text { st } A_{4}^{\text {tree }} \times t \times\left[\left(\ell+k_{1}\right)^{2}\right]^{L-2}
\end{aligned}
$$

$\mathrm{N}=8$ supergravity

stu $M_{4}^{\text {tree }} \times t^{2} \times\left[\left(\ell+k_{1}\right)^{2}\right]^{2(L-2)}$
Integral in D dimensions scales as $\mathcal{I} \sim \int d^{D L} \ell \frac{\left(\ell^{2}\right)^{2(L-2)}}{\left(\ell^{2}\right)^{3 L+1}}$
\rightarrow Critical dimension D_{c} for log divergence obeys

$$
\begin{aligned}
& \frac{D_{c} L}{2}+2(L-2)=3 L+1 \Rightarrow \begin{array}{|ll|}
\hline D_{c}=2+\frac{10}{L} & \mathrm{~N}=8 \\
\hline D_{c}=4+\frac{6}{L} & \mathrm{~N}=4 \mathrm{SYM} \\
\hline
\end{array} . \begin{array}{l}
\text { BDDPR (1998) }
\end{array} \\
& \hline
\end{aligned}
$$

Is this power counting correct?

$$
\begin{aligned}
D_{c}=2+\frac{10}{L} \quad \mathrm{~N}=8 & \Leftrightarrow \\
& \Leftrightarrow \quad \text { stu } M_{4}^{\text {tree }} \times t^{2} \times\left[\left(\ell+k_{1}\right)^{2}\right]^{2(L-2)} \\
& \Leftrightarrow \quad \begin{array}{c}
D^{4} R^{4} \text { potential counterterm } \\
\text { at every loop order } L \geq 2
\end{array}
\end{aligned}
$$

Reasons to reexamine whether it might be too conservative:

- Superspace-based speculation that $D=4$ case diverges only at $L=6$, not $L=5$

Howe, Stelle, hep-th/0211279; K. Stelle, at this workshop

- Multi-loop string calculations seem not to allow $D^{4} R^{4}$ past $L=2$.

Berkovits, hep-th/0609006

- String/M duality arguments with similar conclusions, suggesting possibility of finiteness

Green, Russo, van Hove, hep-th/0610299;
M. Green, at this workshop

- No triangle hypothesis for 1-loop amplitudes

Bjerrum-Bohr et al,, hep-th/0610043
H. Ita, at this workshop

No-triangle power counting at one loop

generic gauge theory (spin 1)
$\begin{aligned} g_{g} \text { ®romg }^{\circ} & \supset \ell^{\mu} \eta^{\nu \rho}+ \\ & \Rightarrow\left(\ell^{\mu}\right)^{n} \end{aligned}$
$\mathrm{N}=4 \mathrm{SYM} \quad \Rightarrow \quad\left(\ell^{\mu}\right)^{n-4}$

generic gravity (spin 2)

$\begin{aligned} h_{2} \text { ñ~~n } & \supset \ell^{\mu_{1}} \ell^{\mu_{2}} \eta^{\nu_{1} \rho_{1}} \eta^{\nu_{2} \rho_{2}}+\cdots \\ & \Rightarrow\left(\ell^{\mu}\right)^{2 n}\end{aligned}$
$\mathrm{N}=8$ supergravity $\quad \stackrel{? ?}{\Rightarrow}\left(\ell^{\mu}\right)^{2(n-4)} \quad$ evidence that it is better
UCLA
L. Dixo

N=8 @ 3 loops \& beyond 12/12/06

No-triangle power counting (cont.)

$$
\begin{aligned}
\mathcal{I}_{n}\left[2 \ell \cdot k_{1}\right] & \equiv \int \frac{d^{D} \ell 2 \ell \cdot k_{1}}{\ell^{2}\left(\ell-k_{1}\right)^{2} \ldots} \\
& =\int \frac{\left.d^{D} \ell \ell^{2}-\left(\ell-k_{1}\right)^{2}\right]}{\ell^{2}\left(\ell-k_{1}\right)^{2} \cdots} \\
& =\mathcal{I}_{n-1}^{(1)}[1]-\mathcal{I}_{n-1}^{(2)}[1] \\
& \ddots
\end{aligned}
$$

generic pentagon quadratic in $\ell^{\mu} \rightarrow$ linear box \rightarrow scalar triangle

But all $\mathrm{N}=8$ amplitudes inspected so far, with $5,6, \sim 7, \ldots$ legs,

A key L-loop topology

2-particle cut exposes Regge-like ladder topology, containing numerator factor of $\left[\left(l+k_{4}\right)^{2}\right]^{2(L-2)}$

L-particle cut exposes one-loop ($L+2$)-point amplitude - but
$\left[\left(l+k_{4}\right)^{2}\right]^{2(L-2)}$
would (heavily) violate the no-triangle hypothesis

Three-loop case

3 loops interesting because it is first order for which:

- $\mathrm{N}=4 \mathrm{SYM}$ \& $\mathrm{N}=8$ SUGRA might have a different critical dimension
- the full amplitude isn't known yet

3-particle cut exposes
one-loop 5-point
amplitude with $\left[\left(l+k_{4}\right)^{2}\right]^{2}$
- violates no-triangle
hypothesis
- which for 5-point case
is a fact

Bern, LD, Perelstein,
Rozowsky, hep-th/9811140

Three-loop case (cont.)

because
$\left(l+k_{4}\right)^{2}=l^{2}+2 l \cdot k_{4}$
and the iterated 2-particle cut, by which this integral was detected, assumes that $l^{2}=0$

However, even the second form violates the no-triangle restriction

Three-loop case (cont.)

Something else must cancel the bad "left-loop" behavior of this contribution. But what?

Maybe other "rung-rule" contributions detectable via 2-particle cuts, such as

Maybe contributions that only appear when the 3-particle cuts (or maybe 4-particle cuts) are evaluated.

What topologies are possible, assuming no triangle subgraphs?

N=8 3-loop rung-rule integrals

N=8 3-loop cubic non-rung-rule topologies

Can N=4 SYM provide more clues?

- For the non-rung-rule topologies, a simple "squaring" of numerator factors is probably too simple.
- Nevertheless, the structure of the nonplanar, subleading-in- N_{c} terms for $\mathrm{N}=4$ SYM at 3 loops may give some hints:

- Color here is not really assigned properly, but that doesn't matter for the application to gravity.

Partial progress for $\mathrm{N}=8$ at 3 loops

3-particle cut can be evaluated using KLT, and "KLT-like", representations of the tree, and 1-loop, 5-point amplitudes.
For example, the loop amplitude has the form

$M_{5}^{1 \text {-loop }}\left(1,2, q_{1}, q_{2}, q_{3}\right)$

$$
\begin{aligned}
= & -\frac{1}{2} \sum_{\text {perms }} s_{q_{2} q_{1}} s_{12}^{2} s_{2 q_{3}}^{2} A_{5}^{\text {tree }}\left(1,2, q_{3}, q_{2}, q_{1}\right) \\
& \times A_{5}^{\text {tree }}\left(1,2, q_{3}, q_{1}, q_{2}\right) \int \frac{d^{D} l_{1}}{(2 \pi)^{D}} \frac{1}{l_{1}^{2} l_{2}^{2} l_{3}^{2} l_{4}^{2}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Products of $N=4$ SYM trees from left and right side of cut give "traces" also encountered in the planar + nonplanar 3-loop N=4 SYM amplitude, simplifying sum over states.

Partial progress at 3 loops (cont.)

- 3-particle cut for fixed q_{i} is sum over 1-loop pentagon-like integrals (many permutations).
- But pentagons are not independent of boxes, so we reduce them all to boxes.
-Then compare coefficients of boxes (and triangles) between the true 3-particle cut, and the 3particle cut of an ansatz built off of the rung-rule diagrams.

Perelstein

> A box which works already (and so should not be corrected by additional terms in the

But it seems somewhat trivial in that none of the non-rung-rule topologies are capable of generating it

Partial progress at 3 loops (cont.)

Another box which works already (and so should not be corrected)
Like the previous box, it seems that none of the non-rung-rule topologies can generate it

 can generate it

Conclusions \& Outlook

- Old power-counting formula from iterated 2-particle cuts predicted

$$
D_{c}=2+\frac{10}{L} \quad \mathrm{~N}=8
$$

- New evidence combining 3- and higher-particle "gedanken" cuts with no-triangle behavior of one-loop multi-leg $\mathrm{N}=8$ amplitudes shows that there must be additional cancellations of some type.
- Will these cancellations reduce the overall degree of divergence at 3 loops? At higher loops? All the way to

$$
D_{c}=4+\frac{6}{L} \quad \mathrm{~N}=4 \mathrm{SYM}
$$

- A complete representation of the 3-loop 4-graviton amplitude, consistent with all the multi-particle cuts, would go a long way toward addressing these important questions.

