UV behaviour of $\mathcal{N}=8$ supergravity: Hints from Perturbative String Theory

Radu Roiban
Pennsylvania State University

December 2006

The plan

- Low energy limit, divergences, cutoff, etc
- String perturbation theory: NSR vs. GS vs. Berkovits
- NSR/GS amplitudes
- summary of known results
- Brief outline of the Berkovits' formalism
- Nonrenormalization theorems
- Implications for 4-dimensional physics
- dimensional reduction, subtleties, etc.

Some references:

On Loop Corrections To String Theory Effective Actions. R.R. Metsaev, A.A. Tseytlin, Nucl.Phys.B298:109,1988.

The Geometry Of String Perturbation Theory
Eric D'Hoker, D.H. Phong, Rev.Mod.Phys.60:917,1988.
Two-loop superstrings VI: Non-renormalization theorems and the 4-point function Eric D'Hoker, D.H. Phong, Nucl.Phys.B715:3-90,2005
$N=4$ Yang-Mills And $N=8$ Supergravity As Limits Of String Theories Michael B. Green, John H. Schwarz, Lars Brink, Nucl.Phys.B198:474-492,1982

The one loop five graviton scattering amplitude and its low-energy limit J.Lee Montag, Nucl.Phys.B393:337-360,1993; hep-th/9205097

Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring Nathan Berkovits, JHEP 0409:047,2004

Pure spinor formalism as an $N=2$ topological string
Nathan Berkovits, JHEP 0510:089,2005
New higher-derivative R^{4} theorems Nathan Berkovits; hep-th/0609006

Quantum Properties Of Higher Dimensional And Dimensionally Reduced Supersymmetric Theories, E.S. Fradkin, A.A. Tseytlin, Nucl.Phys.B227:252,1983.

- quantum field theory from quantum string theory is nontrivial
- 10d: field theory effective action is divergent - need regulator
- Compare w/ string theory: need to identify/introduce same cutoff 1-loop:

Open: introduce cutoff in proper-time integral
Closed: built-in fundamental domain $\tau_{1} \in\left[-\frac{1}{2}, \frac{1}{2}\right], \tau_{2} \in\left[\pi \alpha^{\prime} \sqrt{1-\tau_{1}^{2}}, \infty\right)$

- Limits: low energy
string UV
Closed: $\quad \alpha^{\prime} \rightarrow 0, \kappa_{10}=g_{5} \alpha^{\prime 4}, \wedge$-fixed $\quad \alpha^{\prime}, g_{s}$-fixed, $\wedge \rightarrow \infty$
Not immediatey clear that the two limits commute: decoupling?
\diamond Tree-level expectation: α^{\prime} decouples string massive states
\diamond Quantum level: $\quad \lim _{\alpha^{\prime} \rightarrow 0}$ string loops $=$ loops of $\alpha^{\prime} \rightarrow 0$ string theory
- Obviously true if low energy limit is a finite theory
- checked at 1 and 2 loops by explicit calculations; no all-loop argument \star mass of string states same as cutoff $M^{2} \sim \Lambda^{2} \sim \frac{1}{\alpha^{\prime}}$

Consequence:

1 loop: UV divergences of effective action reproduce UV divergences of low energy field theory indeed (Metsaev, Tseytin)

$$
\Gamma_{10} \propto \int d^{10} x \sqrt{g}\left[\frac{1}{\kappa_{10}^{2}}\left(R+\alpha^{\prime 3} R^{4}\right)+\Lambda^{2} R^{4}+\ldots\right]
$$

- but finite parts may in principle differ
$L \geq 2$: differences may appear in divergent terms (don't at 2-loops)

Obvious questions:
Is it possible to argue convincingly to all loop orders that the leading UV divergence is unaffected by the potential noncommutativity of the $\alpha^{\prime} \rightarrow 0$ and $\Lambda \rightarrow \infty$ limits?
\diamond relation between 10d and 4d divergences?
\diamond is it possible to find the $\alpha^{\prime} \rightarrow 0$ limit of the integrand?

String theory; various formulations

NSR
world sheet susy
fields:
$X^{\mu}, \psi^{\mu}, b, c, \beta, \gamma$
+2 d supergravity
space-time susy space-time susy

$$
X^{\mu}, \theta^{I \alpha}(z, \bar{z}), \text { ghosts }
$$

$$
+2 \mathrm{~d} \text { gravity }
$$

geometric path integral
$X^{\mu}, \theta^{\alpha}(z), p_{\alpha}, \tilde{\theta}^{\alpha}(\bar{z}), \tilde{p}_{\alpha}$ $\lambda_{\alpha}(z), w^{\alpha}, \widetilde{\lambda}_{\alpha}(\bar{z}), \tilde{w}^{\alpha}$
$\bar{\lambda}_{\alpha}(z), \bar{w}^{\alpha *}, \widetilde{\bar{\lambda}}_{\alpha}(\bar{z}), \tilde{w}^{\alpha * *}$ $r_{\alpha}(z), s^{\alpha *}, \widetilde{r}_{\alpha}(\bar{z}), \widetilde{s}^{\alpha * *}$ bc syst., $(0,1)$ weights
fractional weight
geometric
path integral

Berkovits (min/non-min)

*\&** L\&R (constrained) non-minimal systems; fix zero-mode issues

- become the same in light-cone gauge
- Scattering in the NSR formalism

$$
\begin{aligned}
\mathbf{A}_{i_{1} \ldots i_{n}} & =\sum_{h=0}^{\infty} \int \frac{D(E \Omega) \delta(T)}{\operatorname{Vol}(\operatorname{Symm})} \int D X^{\mu} V_{i_{1}} \ldots V_{i_{n}} e^{-I_{m}} \\
\text { Symm } & =\operatorname{sDiff}(\Sigma) \times \operatorname{sWeyl}(\Sigma) \times \operatorname{sU}(1)(\Sigma) \\
I_{m} & =\frac{1}{4 \pi} \int_{\Sigma} d^{2 \mid 2} \mathbf{z} E \mathcal{D}_{+} X^{\mu} \mathcal{D}_{-} X^{\mu} \quad E \equiv \operatorname{sdet} E_{M}{ }^{A} \\
X^{\mu} & \equiv x^{\mu}+\theta \psi_{+}^{\mu}+\bar{\theta} \psi_{-}^{\mu}+i \theta \bar{\theta} F^{\mu} \quad ; \quad E_{m}^{a} \equiv e_{m}^{a}+\theta \gamma^{a} \chi_{m}-\frac{i}{2} \theta \bar{\theta} A e_{m}^{a}
\end{aligned}
$$

- Scattering in the NSR formalism

$$
\begin{aligned}
\mathbf{A}_{i_{1} \ldots i_{n}} & =\sum_{h=0}^{\infty} \int \frac{D(E \Omega) \delta(T)}{\operatorname{Vol}(\operatorname{Symm})} \int D X^{\mu} V_{i_{1}} \ldots V_{i_{n}} e^{-I_{m}} \\
\operatorname{Symm} & =\operatorname{sDiff}(\Sigma) \times \operatorname{sWeyl}(\Sigma) \times \operatorname{sU}(1)(\Sigma)
\end{aligned}
$$

- Reliable superspace gauge fixing

$$
\begin{aligned}
& \quad \mathbf{A}_{i_{1} \ldots i_{n}}=\int_{s \mathcal{M}}\left|d m^{A}\right|^{2} \int D(X B C)\left|\prod_{A} \delta\left(\left\langle H_{A} \mid B\right\rangle\right)\right|^{2} V_{i_{1}} \ldots V_{i_{n}} e^{-I} \\
& I \equiv \frac{1}{2 \pi} \int_{\Sigma} d^{2 \mid 2} \mathbf{z} E\left(\frac{1}{2} \mathcal{D}_{+} X^{\mu} \mathcal{D}_{-} X_{\mu}+B \mathcal{D}_{-} C+\bar{B} \mathcal{D}_{+} \bar{C}\right) \\
& s \mathcal{M}_{h} \equiv\left\{E_{M}^{A}, \Omega_{M}+\delta(T)\right\} / \mathrm{sDiff} \times \mathrm{sWeyl} \times s U(1) ; \operatorname{dim}= \begin{cases}(0 \mid 0) & h=0 \\
(1 \mid 0)_{e} \text { or }(1 \mid 1)_{o} & h=1 \\
(3 h-3 \mid 2 h-2) & h \geq 2\end{cases} \\
& \left(H_{A}\right)_{-}{ }^{z} \equiv(-)^{A(M+1) E_{-}{ }^{M} \frac{\partial E_{M}^{z}}{\partial m^{A}}=\left.\bar{\theta}\left(\mu_{A}-\theta \chi_{A}\right)\right|_{\mathrm{WZ}}}
\end{aligned}
$$

Main issue: what is the measure on the super-moduli space?

1 loop: long history; analytic continuation \& convergence

- consequences presumably incorporated in string-based method for gravity (Bern, Dunbar, Shimada; Dunbar, Norridge,...)
- 4-graviton amplitude \& $\mathcal{N}=8$ limit
(Green, Schwarz)

$$
\begin{aligned}
& \mathcal{A}_{4}^{1 \text { loop }}=\Gamma_{4}^{(1 \mathrm{PI})} \prod_{i=1}^{4} \epsilon^{\mu_{i} \nu_{i}} \mathcal{K}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \overline{\mathcal{K}}_{\nu_{1} \nu_{2} \nu_{3} \nu_{4}} \quad \mathcal{K} \propto p^{4} \\
&\left.\Gamma_{4}^{(1 \mathrm{PI})}\right|_{\mathcal{F}_{2}} \propto \int_{\pi \alpha^{\prime}}^{\infty} \frac{d \tau_{2}}{\left(\tau_{2}\right)^{2}} \int_{0}^{1}\left[\prod_{i=1}^{4} d \beta_{i}\right] \delta\left(1-\sum_{j=1}^{4} \beta_{j}\right) \\
& \times\left[e^{\tau_{2} \Phi\left(p_{12}, p_{23}\right)}+e^{\tau_{2} \Phi\left(p_{12}, p_{13}\right)}+e^{\tau_{2} \Phi\left(p_{23}, p_{13}\right)}\right]+\mathcal{O}\left(\alpha^{\prime}\right) . \\
& \Phi\left(p_{12}, p_{23}\right)=p_{12}^{2} \beta_{1} \beta_{3}+p_{23}^{2} \beta_{2} \beta_{4} ; \quad s=-p_{12}^{2} ; \quad t=-p_{23}^{2} ; \quad u=-p_{13}^{2} ; \quad p_{i j}=p_{i}+p_{j}
\end{aligned}
$$

1 loop: long history; analytic continuation \& convergence

- consequences presumably incorporated in string-based method for gravity
(Bern, Dunbar, Shimada; Dunbar, Norridge,...)
- 4-graviton amplitude $\& \mathcal{N}=8$ limit
(Green, Schwarz)
- 5-graviton amplitude
- Iow energy limit ($D=10 ; \mathcal{A}_{5}=\Gamma_{5} \mathcal{K}_{5} \cdot \epsilon \cdot \overline{\mathcal{K}}_{5} \mathcal{K}_{5} \propto p^{5}$) (Montag)

$$
\begin{aligned}
\left.\Gamma_{5}^{(1 \mathrm{PI})}\right|_{\mathcal{F}_{2}}= & 2 \pi \kappa^{5} \int_{\pi \alpha^{\prime}}^{\infty} \frac{d \tau_{2}}{\left(\tau_{2}\right)^{2}} \int_{0}^{1}\left[\prod_{i=1}^{5} d \beta_{i}\right] \delta\left(1-\sum_{j=1}^{5} \beta_{j}\right) \\
\times & {\left[e^{\tau_{2} \Phi\left(p_{12}, p_{23}, p_{34}, p_{45}, p_{51}\right)}+e^{\tau_{2} \Phi\left(p_{12}, p_{23}, p_{35}, p_{54}, p_{41}\right)}\right.} \\
& +e^{\tau_{2} \Phi\left(p_{12}, p_{24}, p_{43}, p_{35}, p_{51}\right)}+e^{\tau_{2} \Phi\left(p_{12}, p_{24}, p_{45}, p_{53}, p_{31}\right)} \\
& +e^{\tau_{2} \Phi\left(p_{12}, p_{25}, p_{53}, p_{34}, p_{41}\right)}+e^{\tau_{2} \Phi\left(p_{12}, p_{25}, p_{54}, p_{43}, p_{31}\right)} \\
& +e^{\tau_{2} \Phi\left(p_{13}, p_{32}, p_{24}, p_{45}, p_{51}\right)}+e^{\tau_{2} \Phi\left(p_{13}, p_{32}, p_{25}, p_{54}, p_{41}\right)} \\
& +e^{\tau_{2} \Phi\left(p_{13}, p_{34}, p_{42}, p_{25}, p_{51}\right)}+e^{\tau_{2} \Phi\left(p_{13}, p_{35}, p_{52}, p_{24}, p_{41}\right)} \\
& \left.+e^{\tau_{2} \Phi\left(p_{14}, p_{42}, p_{23}, p_{35}, p_{51}\right)}+e^{\tau_{2} \Phi\left(p_{14}, p_{43}, p_{32}, p_{25}, p_{51}\right)}\right]+\mathcal{O}\left(\alpha^{\prime}\right)
\end{aligned}
$$

1 loop: long history; analytic continuation \& convergence

- consequences presumably incorporated in string-based method for gravity
(Bern, Dunbar, Shimada; Dunbar, Norridge,...)
- 4-graviton amplitude \& $\mathcal{N}=8$ limit
(Green, Schwarz)
- 5-graviton amplitude
- Iow energy limit $\left(D=10 ; \mathcal{A}_{5}=\Gamma_{5} \mathcal{K}_{5} \cdot \epsilon \cdot \overline{\mathcal{K}}_{5} \mathcal{K}_{5} \propto p^{5}\right)$ (Montag)
- Same UV behaviour as that of 4-graviton amplitude
- 1PI and 1PR components (required by worldsheet duality)
- pentagons with q^{2} numerator factors but p^{10} outside
- result assigned to cancellations due to 10d gauge invariance
- early hint of no-triangle hypothesis at 5-pt 1-loop?
- similar with unitarity-reconstruction of 10d integrand
(Bern, Dixon, Perelstein, Rozowsky)
- N-graviton amplitude (even spin structure)
- comments on low energy limit $(D=10)$ even spin structure (no ϵ)
(Montag)
- Same UV behaviour as that of 4-graviton amplitude (any helicity)
- unclear how many momenta come out (min 8); gravity $\simeq \partial^{2} \phi^{3}$
- Argument based on counting powers of $\tau_{2}: \frac{\tau_{2}^{N}}{\tau_{2}^{6+(N-4)}}=\frac{1}{\tau_{2}^{2}}$
$\diamond 5+(N-4)$ from rescaling of $q ; N$ from integration over z_{i}
- N -gons with $q^{2 N-8}$ numerator factors \mapsto boxes?
- Perhaps an early hint of no-triangle hypothesis?
- 1PI and 1PR components (required by worldsheet duality)
- Not clear what happens with odd spin structures (parity-odd), but field theory intuition suggests that they are less divergent

2 loops: technical complications:

- issue: local gauge slice dependence of prescriptions
- For even spin structures:
- gauge-fixed measure $d \mu[\delta]$, independent of gauge slice
- unique relative phases making $\sum_{\delta} \eta_{\delta} d \mu[\delta]$ a modular form
- $\sum_{\delta} \eta_{\delta} d \mu[\delta]$ vanishes point-by-point
- explicit vanishing of $N \leq 3-\mathrm{pt}$ amplitudes for graviton multiplet
- 4-point amplitude
\diamond type II: nren. R^{4}; Heterotic: nren. $F^{4},\left(F^{2}\right)^{2}, F^{2} R^{2}$ and R^{4}
\diamond type II: $\mathcal{A}_{4} \propto p^{12}$ (improves older arguments that $A_{4}^{2-100 p} \propto p^{8}$)
\diamond agrees with $S L(2, \mathbb{Z})$ duality predictions
- squares with explicit unitarity reconstruction of 10d integrand
$L>2$ loops: \diamond Info unavailable; need assumptions

Review of the Berkovits' formalism

Goal: Covariantly quantize space-time susy strings in 10d
\diamond main difficulty w/ GS: 2nd class constraints $\leftrightarrow \kappa$ symmetry

- κ symmetry \Longrightarrow half of each fermion is unphysical
\Longrightarrow covariance requires infinitely many ghosts $\sum_{n \geq 0}(-1)^{n}=\frac{1}{2}$
- Different approach:
\diamond declare $Q^{2}=0$ as fundamental and search for solutions with the same "matter" fields as the GS string (perhaps in first order formalism): 10 nonchiral $X-\mathrm{s}, 16 \theta^{\alpha}(z), p_{\alpha}(z)$ and $16 \tilde{\theta}^{\alpha}(\bar{z}), \widetilde{p}_{\alpha}(\bar{z})$
\diamond add " ghost" fields such that $\left(c_{L}^{\text {total }}, c_{R}^{\text {total }}\right)=(0,0)$
- $c_{L}^{\text {matter }}=10-2 \times 16=-22 \rightarrow$ e.g. 11 weight $(0,1)$ bc systems \diamond no "regular" representation of $S O(9,1)$ - add nonlinear constraints
\diamond no direct relation to κ-symmetry ghosts

Projection: commuting subalgebra of 10d susy algebra \& SYM eom

$$
\left\{D_{\alpha}, D_{\beta}\right\} \propto\left(\gamma^{\mu}\right)_{\alpha \beta} P_{\mu} \quad \rightarrow \quad \lambda^{\alpha} \lambda^{\beta}\left\{D_{\alpha}, D_{\beta}\right\}=0
$$

"Projector" : $\lambda^{\alpha} \lambda^{\beta}\left(\gamma^{\mu}\right)_{\alpha \beta}=0-$ covariant constraint

- With background: $D_{\alpha}^{V}=D_{\alpha}+V_{\alpha}$

$$
\lambda^{\alpha} \lambda^{\beta}\left\{D_{\alpha}^{V}, D_{\beta}^{V}\right\} \propto \propto_{\operatorname{lin}} \lambda^{\alpha} \lambda^{\beta} D_{(\alpha} V_{\beta)} \propto \lambda^{\alpha} \lambda^{\beta} \gamma_{\alpha \beta}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}} \mathcal{F}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}}
$$

\longrightarrow SYM equations of motion

- Interestingly: $\lambda^{\alpha}=\lambda^{+}\left(1, \epsilon_{a b c d e} u^{b c} u^{d e}, u^{a b}\right)=(1, \overline{5}, 10)$ of $U(5) \subset S O(10)$
$\rightarrow 11$ independent; covariant constraint (but no covariant solution)
- use components of λ^{α} as the missing "ghosts" introduce conjugate momenta; assemble them in $w_{\alpha}=(\mathbf{1}, \overline{5}, 10)$
- $Q=\int \lambda^{\alpha} d_{\alpha}$ (type I/Heterotic); type II: 2 copies Q_{L} and Q_{R}
- $d_{\alpha}=p_{\alpha}+\gamma_{\alpha \beta}^{\mu} \partial x_{\mu} \theta^{\beta}+\frac{1}{2} \gamma_{\alpha \beta}^{\mu} \gamma_{\mu \gamma \delta} \theta^{\beta} \theta^{\gamma} \partial \theta^{\delta}-$ ws realization of D_{α}

Main advantage: 32 manifest $Q_{\alpha}^{I} \mapsto$ full power of superspace In spite of non-covariant decomposition $\lambda=(1, \overline{5}, 10) \ldots$.

- all "useful" operators are constructed out of λ
- OPE algebra is covariant
$\diamond N^{\mu \nu}=\lambda \gamma^{\mu \nu} w \& \widetilde{N}^{\mu \nu}=\tilde{\lambda} \gamma^{\mu \nu} \widetilde{w}$ obey Lorentz algebra
$\diamond J^{\mu \nu}=\theta \gamma^{\mu \nu} p+N^{\mu \nu}$ has the same level as in NSR
- bosonization: conf gauge NSR \leftrightarrow part of Berkovits' fields
- Rest: add further fields and gauge "completing" them to $S O(10)$ representations: unchanged cohomology: add quartets

$$
\left.\begin{array}{ll}
\delta_{\mathrm{BRST}} \tilde{\chi}=\tilde{\gamma} & \delta_{\mathrm{BRST}} \tilde{\gamma}=0 \\
\delta_{\mathrm{BRST}} \tilde{\beta}=\tilde{\mu} & \delta_{\mathrm{BRST}} \tilde{\mu}=0
\end{array}\right\} \quad Q \rightarrow Q+\tilde{\gamma} \tilde{\mu} \quad \& \text { reorganize } \quad Q=\lambda^{\alpha} d_{\alpha}
$$

- reverse: gauge-fix to lightcone

States and vertex operators: $Z^{M}=\left(X^{\mu}, \theta^{\alpha}, \tilde{\theta}^{\alpha}\right)$

$$
Q V=0 \quad\{Q, U\}=\partial V \quad \text { impose on-shell conditions }
$$

SYM: $V_{Y M}=\lambda^{\alpha} A_{\alpha}(x, \theta) ; \quad U_{Y M}=\partial \theta^{\alpha} A_{\alpha}+\Pi^{\mu} B_{\mu}+d_{\alpha} W^{\alpha}+N_{\mu \nu} F^{\mu \nu}$
sugra: $V_{g}=V_{\mathrm{YM}} \tilde{V}_{\mathrm{YM}} ; \quad U_{\mathrm{g}}=U_{\mathrm{YM}} \tilde{U}_{\mathrm{YM}} \propto e^{i k x}$
Objections:

- not quite geometric; constructed directly with gauge-fixed diffeo invariance (conformal gauge)
- missing diffeo ghosts - in particular $b ; \nexists$ negative ghost nr. op.
\rightarrow need some prescription to go to higher loops
- The minimal version has $11_{L}+11_{R}$ chiral bosons; similar to NSR need picture changing operators to kill zero-mode integrals

States and vertex operators: $Z^{M}=\left(X^{\mu}, \theta^{\alpha}, \tilde{\theta}^{\alpha}\right)$

$$
Q V=0 \quad\{Q, U\}=\partial V \quad \text { impose on-shell conditions }
$$

SYM: $V_{Y M}=\lambda^{\alpha} A_{\alpha}(x, \theta) ; \quad U_{Y M}=\partial \theta^{\alpha} A_{\alpha}+\Pi^{\mu} B_{\mu}+d_{\alpha} W^{\alpha}+N_{\mu \nu} F^{\mu \nu}$
sugra: $V_{g}=V_{Y M} \tilde{Y}_{Y M} ; U_{\mathrm{g}}=U_{\mathrm{YM}} \widetilde{U}_{\mathrm{YM}} \propto e^{i k x}$
Objections:

- not quite geometric; constructed directly with gauge-fixed diffeo invariance (conformal gauge)
- missing diffeo ghosts - in particular $b ; \nexists$ negative ghost nr. op.
\rightarrow need some prescription to go to higher loops
- The minimal version has $11_{L}+11_{R}$ chiral bosons; similar to NSR need picture changing operators to kill zero-mode integrals
\diamond genus $g: \#_{0}(\lambda)=11$ and $\#_{0}(w)=11 g$; organize in $\lambda^{\alpha}, N^{\mu \nu}, J_{\lambda}$
\diamond e.g. $Z \propto \delta\left(J_{\lambda}\right) J_{\lambda}=\lambda^{\alpha} w_{\alpha} \& ~ f i x$ coefficient from $Q Z=0 \& \partial Z=Q \wedge$
\diamond no neg. ghost $\#$ op; absorb \mathbf{Z} in antighost: $\{Q, \widetilde{b}\}=T Z_{B}$

Advantage: fields $=$ worldsheet scalars \mapsto no supermoduli space

$$
\begin{aligned}
& \mathcal{A}_{N}=\int d^{3 g-3} \tau\langle | \prod_{j=1}^{3 g-3}\left(\int d w_{j} \mu_{j}\left(w_{j}\right) \widetilde{b}_{B_{j}}\left(w_{j}\right)\right) \times \\
& \left.\quad \times\left.\prod_{P=3 g-2}^{10 g} Z_{B_{P}}\left(w_{P}\right) \prod_{R=1}^{g} Z_{J}\left(v_{R}\right) \prod_{I=1}^{11} Y_{C_{I}}\left(y_{I}\right)\right|^{2} \prod_{r=1}^{N} \int d z_{r} U\left(z_{r}\right)\right\rangle \\
& \begin{array}{c}
Z_{B}=B_{\mu \nu}\left(\lambda \gamma^{\mu \nu} d\right) \delta\left(B_{\rho \sigma} N^{\rho \sigma}\right) \quad Z_{J}=\left(\lambda^{\alpha} d_{\alpha}\right) \delta\left(J_{\lambda}\right) \quad Y_{C_{I}}=C_{I \alpha} \theta^{\alpha} \delta\left(C_{I \beta} \lambda^{\beta}\right)
\end{array} \\
& \text { schematically: } \begin{array}{r}
\tilde{b}_{B}=B\left(d^{2} \Pi+d N \partial \theta+N^{2}+N \Pi^{2}\right) \delta(B N) \\
\quad+B^{2}\left(d^{4}+d^{2} N \Pi+N^{2} \Pi^{2}+N^{2} d \partial \theta\right) \delta^{\prime}(B N) \\
\\
\quad+B^{3}\left(d^{4} N+d^{2} N^{2} \Pi\right) \delta^{\prime \prime}(B N)+B^{4}\left(d^{4} N^{2}\right) \delta^{\prime \prime \prime}(B N)
\end{array}
\end{aligned}
$$

Related to our discussion - 0-mode counting=pointwise cancellation

- 0-, 1-, 2-, 3-point amplitudes vanish to all genera
- first contribution can be $\partial^{4} R^{4}$ - similarly with NSR

Can one do better? \mapsto Non-minimal pure spinor superstring
(Berkovits; Berkovits, Nekrasov)

Idea: Eliminate the need for picture-changing operators i.e. eliminate zero modes
$\diamond \lambda_{0}^{\alpha} \& \bar{\lambda}_{0}^{\alpha} \mapsto a_{\lambda}^{\alpha}=\lambda_{0}^{\alpha}+i \bar{\lambda}_{0}^{\alpha} \&\left(a_{0}^{\dagger}\right)^{\alpha}=\lambda_{0}^{\alpha}-i \bar{\lambda}_{0}^{\alpha}$
(Berkovits, Hatsuda, Siegel - NSR)
\diamond extra fields but same spectrum \mapsto quartets

- New field content:
$\lambda^{\alpha}(z), w_{\alpha} \& \underbrace{\overbrace{\bar{\lambda}_{\alpha}(z), \bar{w}^{\alpha}}^{\text {bosons }}, r_{\alpha}(z), s^{\alpha}}_{11 \text { quartets }}$ \& constraints: $\bar{\lambda} \gamma^{\mu} \bar{\lambda}=0 \bar{\lambda} \gamma^{\mu} r=0$

$$
Q_{\mathrm{non}-\min }=\int d z\left(\lambda^{\alpha} d_{\alpha}+\bar{w}^{\alpha} r_{\alpha}\right)
$$

Several BRST invariants:

$$
\begin{aligned}
& \bar{N}_{\mu \nu}=\frac{1}{2}\left(\bar{w} \gamma_{\mu \nu} \bar{\lambda}-s \gamma_{\mu \nu} r\right) \quad \bar{J}_{\bar{\lambda}}=\bar{w} \bar{\lambda}-s r \quad \bar{T}_{\bar{\lambda}}=\bar{w} \partial \bar{\lambda}-s \partial r \\
& S=s \bar{\lambda} \quad J_{r}=r s \quad \Phi=\bar{w} r \quad S_{\mu \nu}=\frac{1}{2} s \gamma_{\mu \nu} \bar{\lambda}
\end{aligned}
$$

\rightarrow no correction to level of Lorentz alg. \& central charge
\diamond From the existing fields construct an $\mathcal{N}=2$ algebra $w /$ the same properties as that of "critical topological strings

- $U(1)$ generator may be taken $J_{\text {ghost }}=w_{\alpha} \lambda^{\alpha}-\bar{w}^{\alpha} \bar{\lambda}_{\alpha}$ up to $Q \wedge$
- b-ghost \equiv spin-2 generator of this algebra!
\diamond Forget that the non-minimal fields have been added to deal with the zero-modes and use the technology developped for amplitude calculations for topological strings
\diamond same vertex operators as before; $V_{\text {closed }}=V_{\text {open }} \bar{V}_{\text {open }}$

Non-minimal amplitude prescription:

- similar to bosonic string - no supermoduli space

$$
\begin{gathered}
\left.\mathcal{A}_{N}=\left.\int\left[d^{2} \tau\right]_{3 g-3}\left\langle\left.\left.\right|_{j=1} ^{3 g-3} \int\left(d y_{j} \mu_{j}\left(y_{j}\right) b\left(y_{j}\right)\right)\right|^{2} \prod_{r=1}^{N} \int d^{2} z_{r} U\left(z_{r}\right)\right| \mathcal{N}\right|^{2}\right\rangle \\
\left\rangle \equiv \int[d \lambda][d \bar{\lambda}][d r]\left[d w^{I}\right]\left[d \bar{w}^{I}\right]\left[d s^{I}\right] \sim \lambda^{3 g+8} \bar{\lambda}^{11}\right.
\end{gathered}
$$

- $b(y)$-composite b-ghost, $\{Q, b\}=T$; - needs regularization

$$
\begin{aligned}
b & =s^{\alpha} \partial \bar{\lambda}_{\alpha}+\frac{\left.\bar{\lambda}(2 \Pi \lambda-\lambda\rangle \partial \theta-J_{\lambda} \partial \theta-\partial^{2} \theta\right)}{4(\bar{\lambda} \lambda)}+\frac{\left(\bar{\lambda} \gamma^{m n p} r\right)\left(d \gamma_{m n p} d+24 N_{m n} \Pi_{p}\right)}{192(\bar{\lambda} \lambda)^{2}} \\
& -\frac{\left(r \gamma_{m n p} r\right)\left(\bar{\lambda} \gamma^{m} d\right) N^{n p}}{16(\bar{\lambda} \lambda)^{3}}+\frac{\left(r \gamma_{m n p} r\right)\left(\bar{\lambda} \gamma^{p q r} r\right) N^{m n} N_{q r}}{128(\bar{\lambda} \lambda)^{4}}
\end{aligned}
$$

- $\mathcal{N}=e^{\{Q, \chi\}-r e g u l a r i z a t i o n ~ f a c t o r ~ f o r ~ z e r o-m o d e ~ i n t e g r a l s ~}$
- formal proof that amplitude is independent of choice of χ
- pick: $\mathcal{N}=e^{-\bar{\lambda}_{\alpha} \lambda^{\alpha}-r_{\alpha} \theta^{\alpha}-\frac{1}{2} N_{\mu \nu}^{I} \bar{N}_{I}^{\mu \nu}-J^{I} \bar{J}_{I}-\left(\bar{\lambda} s^{I}\right)\left(\lambda d^{I}\right)-\frac{1}{4}\left(s^{I} \gamma^{\mu \nu} \bar{\lambda}\right)\left(d^{I} \gamma_{\mu \nu} \lambda\right)}$
- may contribute θ zero-modes

Nonrenormalization theorem for 4-graviton amplitude:
$U_{\text {closed }}=U_{\text {open }} \bar{U}_{\text {open }} \quad U_{\text {open }}=A_{M} \partial Z^{M}+W^{\alpha} d_{\alpha}+F_{\mu \nu} N^{\mu \nu}$
Idea: \star naive counting of zero-modes (no regularization)
\star reliable as long as there is no need for regularization
chiral zero-mode census:
their origin:
\diamond the logic:

d_{α}	θ^{α}	r	s	λ	w	$\bar{\lambda}$	\bar{w}
$16 g$	16	11	$11 g$	11	$11 g$	11	$11 g$
		d_{α}	θ^{α}	r	s		
U	4	$2 g+4$	-	-			
\mathcal{N}	$11 g$	$12-2 g$	$12-2 g$	$11 g$			
b	$5 g-4$	$\mathrm{~N} / \mathrm{A}$	$2 g-1$	-			

$$
\mapsto \max . \# r \text { from } \mathcal{N} \mapsto \min . \# r \text { from } b
$$

Consequences for the structure of amplitudes/effective action:

- Gravity: $\left(\partial_{\theta} \partial_{\tilde{\theta}}\right)^{2 g+4} W_{\text {grav }}^{4} \sim \partial^{2 g} R^{4}$

$$
\text { pole: } \frac{\lambda^{3 g+8} \bar{\lambda}^{11}}{\bar{\lambda}^{2 g-1} \lambda^{5 g-4}} \mapsto g<6
$$

Nonrenormalization theorem for 4-graviton amplitude:

Idea: \star naive counting of zero-modes (no regularization) \star reliable as long as there is no need for regularization

Consequences for the structure of effective action:

- Gravity: $\left(\partial_{\theta} \partial_{\tilde{\theta}}\right)^{2 g+4} W_{\text {grav }}^{4} \sim \partial^{2 g} R^{4}$
- SYM: $\quad \partial_{\theta}^{2 g+4} W_{Y M}^{4} \sim \partial^{g} F^{4}$

$$
\text { pole: } \frac{\lambda^{3 g+8} \bar{\lambda}^{-11}}{\bar{\lambda}^{2 g-1} \lambda^{4 g-4}} \mapsto g<6
$$

Curiously - naive application of chiral counting leads to discrepancy
Explicit calculations of the 3-loop SYM integrand (Bern, Dixon, Smirnov)

$$
\Gamma_{d=10}^{3-\text { loops }} \propto \partial^{2} F^{4}
$$

\diamond Puzzling - zero-mode counting implies pointwise cancellation component formalism: dimension-dependent cancellations?

Relations to 4d physics

- Compactification on T^{6} with $R_{i}^{2} \gg \alpha^{\prime} \rightarrow 0$
- distinguish integrand/amplitude from effective action
v1: compute/define string theory on $\mathbb{R}^{1,3} \times T^{6}$
v2: compute/define string theory on $\mathbb{R}^{1,9}$ \& "compactify" the result
- Subtleties with v2:

2 steps: - relate regulators - for proper-time cutoffs relate cutoffs - relate higher-dim and 4-dim fields

Compare 1-loop effective actions

$$
\Gamma_{d}=-\left[\frac{1}{d} \wedge^{d} \mathcal{B}_{0}+\cdots+\frac{1}{d-p} \wedge^{d-p} \mathcal{B}_{p}+\frac{1}{2} \ln \frac{\Lambda^{2}}{\mu^{2}} \mathcal{B}_{d}+\text { finite }\right]
$$

$\Lambda_{4}^{4}=\Lambda_{d}^{d} \vee$ OI $\left(T^{d-4}\right) \mapsto 4 d$ log divergences are related to \wedge^{d-4} (SYM)

- presumably captures some differences d-dim and 4-dim q-integrals
$\mathcal{B} \sim$ heat kernel coeff's; differ due to changes in the kinetic operator If $A_{(d)}=\left(A_{(4)}, 0\right)$ and $g_{d}=\left(\begin{array}{cc}g_{(4)} & 0 \\ 0 & \mathbf{1}_{d-4}\end{array}\right)$ then $\mathcal{B}_{p}\left(\Delta_{d}\right)=\mathcal{B}_{p}\left(\Delta_{4}\right)$
\diamond reduced theory may have divergences that break d-dim symmetries
- maximal susy glues all sectors

Higher loops:

$$
\begin{gathered}
\Gamma_{d} \sim \sum_{l=0}^{N} \hbar^{l} \sum_{k=1}^{l}\left(\sum_{p=0}^{d-1} \Lambda^{d-p} \mathcal{B}_{p}^{l, k}+\ln \frac{\Lambda^{2}}{\mu^{2}} \mathcal{B}_{d}^{(l, k)}\right)^{k} \\
\left\{\Lambda^{d-4+k} \sum_{r<s} \alpha_{r}\left(\ln \frac{\Lambda^{2}}{\mu^{2}}\right)^{r}\right\}_{d-\operatorname{dim}} \mapsto\left\{\Lambda^{k}\left(\ln \frac{\Lambda^{2}}{\mu^{2}}\right)^{s}\right\}_{4-\operatorname{dim}}
\end{gathered}
$$

\diamond seems unclear if there is an algorithmic way of relating counterterms of d and 4 -dim theories if we start with full d simmetry

- potential dimension-dependent cancellations

Conclusion

\triangle "Reports of the death of supergravity are exagerations."
$\triangle \mathrm{P}$. string theory hints that $\mathcal{N}=8$ sugra $U V$ behaviour is better
\triangle Some hints are recovered from field theory considerations
$\triangle \ldots$ but some are (much) better

- Subtleties remain in relating string and sugra EA, 10d \& 4d, etc
- If $\mathcal{N}=8$ supergravity is finite, what is its relation to string theory?
- e.g. twistor/topological string interpretation? (Abu-Zeid, Hull, Mason)
- what does one need to impose to reconstruct string theory?
- N-graviton amplitude (even spin structure)

$$
\begin{aligned}
\mathcal{A}_{N}^{1 \text { loop }}= & \frac{\kappa^{N}}{2^{10}\left(\alpha^{\prime}\right)^{12-N}} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}} \int\left[\prod_{i=1}^{N} \epsilon_{i}^{\mu_{i} \nu_{i}} d \bar{\eta}_{i \mu_{i}} d \eta_{i \nu_{i}} d^{2} \theta_{i} d^{2} z_{i}\right] \\
& \times \exp \left[-\frac{i \pi \alpha^{\prime}}{2} \sum_{i j}^{\prime} p_{i} \cdot p_{j} G_{11}^{i j}\right] \int d^{10} q \exp \left[-\frac{\pi \tau_{2}}{4 \alpha^{\prime}} q^{2}\right] \\
& \times\left|\sum_{a \times b=0}(-)^{a+b}\left\{\frac{\Theta_{a b}(0 \mid \tau)}{[\eta(\tau)]^{3}}\right\}^{4} \exp \left[\widetilde{K}_{a b}(\bar{\eta}, \bar{\theta} ; q)\right]\right|^{2} \\
\widetilde{K}_{a b}(\bar{\eta}, \bar{\theta})= & -i \pi \alpha^{\prime} \sum_{i j}^{\prime}\left\{p_{i} \cdot p_{j} \bar{\theta}_{i} \bar{\theta}_{j} S_{a b}^{i j}+\bar{\eta}_{i} \cdot \bar{\eta}_{j} S_{a b}^{i j}-2 p_{i} \cdot \bar{\eta}_{j} \bar{\theta}_{i} S_{a b}^{i j}\right. \\
& \left.-2 p_{i} \cdot \bar{\eta}_{j} \bar{\theta}_{j}\left[\left(\partial_{j} G_{11}^{i j}\right)-\frac{1}{2 i \tau_{2}}\left(z_{i j}-\bar{z}_{i j}\right)\right]-2 \bar{\eta}_{i} \cdot \bar{\eta}_{j} \bar{\theta}_{i} \bar{\theta}_{j}\left[\left(\partial_{i} \partial_{j} G_{11}^{i j}\right)-\frac{1}{2 i \tau_{2}}\right]\right\} . \\
& +i \pi \sum_{j}\left[q-\frac{i \alpha^{\prime}}{\tau_{2}} \sum_{i} p_{i}\left(z_{i j}-\bar{z}_{i j}\right)\right] \cdot \bar{\eta}_{j} \bar{\theta}_{j} \\
G_{11}^{i j}= & -\frac{1}{2 i \pi} \log \left|e^{-\pi y_{i j}^{2} / \tau_{2}} \frac{\Theta_{11}\left(z_{i j} \mid \tau\right)}{\eta(\tau)}\right|^{2} ; \quad S_{a b}^{i j}(z)=-\frac{1}{2 i \pi} \frac{\Theta_{a b}\left(z_{i j} \mid \tau\right) \Theta_{a b}^{\prime}(0 \mid \tau) \Theta_{11}(0 \mid \tau)}{\left.\mathcal{O}_{i j} \mid \tau\right)}
\end{aligned}
$$

