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1 Introduction

Supersymmetry leads to a remarkable improve-
ment of the UV behavior of QFT and in some
case to UV finiteness. The deep understand-
ing of this phenomenon requires, in my opin-
ion, an off-shell formulation of the theory with
manifest linear supersymmetry. More than 30
years after the invention of SUSY this problem
has not yet been solved in all possible cases, in
particular, for N = 8 supergravity.

Here I review the off-shell formulations of
two theories with extended SUSY, the N = 2
hypermultiplet and N = 3 SYM. Both use
harmonic superspace with additional bosonic
coordinates on a coset of the R-symmetry group.
They share the feature of having infinite sets
of auxiliary fields coming from the harmonic
expansion. I also propose a generalization for
N = 4 SYM which is based on a twistor trans-
form in 5 dimensions.
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2 The N = 2 hypermultiplet

2.1 The N = 2 hypermultiplet on shell

The N = 2 complex hypermultiplet is de-
scribed by the superfield qi(x, θαi, θ̄α̇i) subject
to the on-shell conditions (Sohnius)

Dα iq
j = 1

2δ
j
i Dα kq

k , D̄
(i
α̇qj) = 0 ⇒

qi = f i(x)+θα iψα(x)+θ̄α̇ jε
ijκ̄α̇(x)+der. terms

∂/κ̄ = ∂/ψ = ∂ · ∂f i = 0

No-go theorem: this form of the HM does not
exist off shell with a finite set of auxiliary fields
(counting argument, Rocek&Siegel, Stelle)

Way out: introduce an infinite set of aux-
iliary fields obtained by extending the super-
space by a complex compact manifold of bosonic
variables (Galperin, Ivanov, Kalytsin, Ogievet-
sky, ES)
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S2 =
SU(2)

U(1)

where SU(2) is the automorphism group of
N = 2 SUSY.

Harmonic realisation of the coset S2:

ui
I ∈ SU(2) :

uI
i = ui

I , ui
Iu

J
i = δJ

I , εijε
IJui

Iu
j
J = 1

where i = 1, 2 is an SU(2) index and I = 1, 2
is a U(1) index (charge)

Project HM constraints with ui
2, u1

i :

G-analyticity Dα 2 q1 = D̄1
α̇ q1 = 0

Dα 2 = ui
2Dα i , D̄1

α̇ = u1
i D̄

i
α̇ , q1 = u1

iq
i

G-analyticity (also known as 1
2 BPS shorten-

ing condition) can be solved in an appropriate
basis (recall the chiral basis) since
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{D2, D2} = {D2, D̄
1} = {D̄1, D̄1} = 0

xαα̇
A = xαα̇ + iθα I θ̄α̇

I

Dα 2 q1 = D̄1
α̇ q1 = 0 ⇒ q1(xA, θ1, θ̄2, u)

Harmonic dependence given by harmonic ex-
pansion on S2, e.g.:

f1(u) = f iu1
i + f (ijk)u1

iu
1
ju

2
k + . . .

where f (ijk··· ) are irreps of SU(2). Homoge-
neous action of U(1) ⊂ SU(2) → function on
the coset with fixed U(1) weight.

H-analyticity (SU(2) irreducibility): harmonic
derivatives on the coset as generators of SU(2):
raising (D1

2) and lowering (D2
1) operators and

U(1) charge (D1
1 = −D2

2)

[D1
2, D

2
1] = D1

1
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D1
2u

i
1 = ui

2 , D1
2u

i
2 = 0 , etc.

D1
1u

i
1 = ui

1 , D1
1u

i
2 = −ui

2

H-analyticity (highest weight irrep):

D1
2f

1(u) = 0 ⇒ f1(u) = f iu1
i

The on-shell HM q1 satisfies the supersym-
metrized version of

H-analyticity: D1
2q

1(x, θ1, θ̄2, u) = 0

with D1
2 = (∂u)12 + iθ1σµθ̄2

∂

∂xµ

This implies an ultrashort superfield

q1 = f i(x)u1
i + θα 1ψα(x) + θ̄α̇ 2κ̄

α̇(x)

+iθ1σµθ̄2∂µf i(x)u2
i

and the field equations for f i, ψ, κ̄.
Conjugation: the G-analytic superspace is

closed under the combination of complex con-
jugation and the antipodal map on S2:
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(̃q1) = q̃2(x, θ1, θ̄2, u)

satisfying the same G- and H-analyticity con-
ditions

Dα 2 q̃2 = D̄1
α̇ q̃2 = D1

2 q̃2 = 0

Conclusion: the combination of G- and H-
analyticity conditions gives an equivalent de-
scription of the N = 2 HM on shell.

2.2 Going off shell

Original description: H-analyticity is kinemat-
ical (SU(2) irreducibility) while G-analyticity
is dynamical (field equations). Going to the G-
analytic basis allows to switch roles: G-analyticity
is treated as kinematical and can be solved
while H-analyticity becomes dynamical and should
be derived from an off-shell action. The exis-
tence of an action is always a small miracle:

SHM =

∫
d4x du d2θ1 d2θ̄2 q̃2 D1

2 q1
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Notice the conservation of U(1) charges.
The action contains an infinite set of auxil-

iary fields coming from the harmonic expan-
sion on the sphere S2. The field equation

δ

δq̃2
⇒ D1

2 q1 = 0

eliminates all auxiliary fields and puts the phys-
ical ones on shell.

Self-interaction of sigma-model type: add a
G-analytic potential term

∫
d4x du d2θ1 d2θ̄2

[
q̃2 D1

2 q1 + L11
22(q

1, q̃2, u)
]

Example: L11
22 = λ(q1q̃2)

2 gives rise to the
Taub-NUT metric upon elimination of the aux-
iliary fields.
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Quantization is straightforward in the off-
shell theory.

Propagator

〈q̃2(p, θ, u) q1(p, η, v)〉 =
i

p2 (ui
2 v1

i )
3
(Dθ 2)

2(D̄1
θ)

2 (Dη 2)
2(D̄1

η)2δ8(θ−η)

Vertex
∫

du d2θ1 d2θ̄2

Finiteness of 2-d N = (4, 4) sigma-models by
power counting: Restore all vertices d4θ →
d8θ and do all θ integrals but one. Resulting
term in the effective action

λk
∫

d8θ d2p1 . . . d2pm δ2(p1 + · · · + pm)

(D)n [q(p1) . . . q(pm)]I(p1, . . . , pm)

Power counting gives dim [I ] = −n
2 − 2 < 0

which ensures UV convergence.
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3 N = 3 Super-Yang-Mills

3.1 On-shell curvature constraints

N = 3 SYM has the same field contents as
N = 4 SYM but the fields are organized in rep-
resentations of SU(3) instead of SU(4). Thus,
the 6 real scalars of N = 4 SYM are described
by a triplet of complex super-Yang-Mills cur-
vatures Wij = −Wji = φij(x) + θ terms
(i, j = 1, 2, 3) satisfying the constraints:

{∇α i,∇β j} = εαβ Wij

{∇̄i
α̇, ∇̄j

β̇
} = ε

α̇β̇
W̄ ij

{∇α i, ∇̄j

β̇
} = iδ

j
i∇αβ̇

These constraints, like the HM ones, imply
field equations.

G-analyticity interpretation: Introduce har-
monics on the coset SU(3)/U(1)× U(1)

ui
I ∈ SU(3) :
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uI
i = ui

I , ui
Iu

J
i = δJ

I , εijkε
IJKui

Iu
j
Juk

K = 1

and project the constraints with ui
3 and u1

i to
obtain G-zero-curvature conditions:

{∇α 3,∇β 3} = {∇̄1
α̇, ∇̄1

β̇
} = {∇α 3, ∇̄1

β̇
} = 0

These are the integrability conditions for the
existence of G-analytic (or 1/3 BPS) super-
fields

∇α 3Φ = ∇̄1
α̇Φ = 0 ⇒ Φ(x, θ1,2, θ̄2,3, u)

in the appropriate G-analytic basis in super-
space.

The zero-curvature conditions are equivalent
to the original on-shell constraints provided
the projected covariant derivatives ∇α I , ∇̄I

α̇
are linear in the harmonics. This is guaranteed
by H-analyticity.

The compact coset SU(3)/U(1)× U(1) has
3 complex dimension with corresponding har-
monic derivatives (raising operators of SU(3))
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DI
J , I < J satisfying H-zero-curvature condi-

tions

[D1
2, D

1
3] = [D1

3, D
2
3] = 0 , [D1

2, D
2
3] = D1

3

They commute with the projected spinor deriva-
tives (G/H-zero-curvature conditions):

[DI
J ,∇α 3] = [DI

J , ∇̄1
α̇] = 0 , I < J

which defines ∇α 3 (and ∇̄1
α̇) as the HWS of

the (anti)fundamental irrep of SU(3).
Conclusion: on-shell N = 3 SYM is equiva-

lent to a set of zero-curvature conditions in a
superspace enhanced with harmonic variables
on a coset of SU(3) (Galperin, Ivanov, Ka-
lytsin, Ogievetsky, ES, 1984). This resembles
the twistor treatment of self-dual Yang-Mills.
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3.2 Twistor transform

Before going off shell we do a twistor trans-
form of the constraints. The G-zero-curvature
conditions can be solved in the form of ‘pure
gauges’

∇α 3 = e−ibDα 3e
ib , ∇̄1

α̇ = e−ibD̄1
α̇eib

by introducing a gauge bridge b(x, θ, θ̄, u). The
twistor transform makes the projected spinor
covariant derivatives flat. Instead, the har-
monic derivatives DI

J now acquire connections

∇I
J ≡ DI

J + iV I
J = eibDI

Je−ib , I < J

From the mixed G/H-zero-curvature condi-
tions we deduce that the new harmonic con-
nections V I

J must be G-analytic:

V I
J (x, θ1,2, θ̄2,3, u)

What remains unsolved are the H-zero-curvature
conditions
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[∇1
2,∇1

3] = 0 ↔ F 11
23 = 0

[∇1
3,∇2

3] = 0 ↔ F 12
33 = 0

[∇1
2,∇2

3] = ∇1
3 ↔ F 12

23 = 0

Previously trivial, now they become equivalent
to the field equations of N = 3 SYM.

3.3 Off-shell action

The crucial observation is that three zero-curvature
conditions can be derived from a Chern-Simons-
type action provided we can find a superme-
asure matching the properties of the CS form
(U(1) × U(1) charges and vanishing dimen-
sion). Remarkably, it exists:

SN=3 =

∫
d4x du d2θ1 d2θ2 d2θ̄2 d2θ̄3

Tr
[
V 1

2 F 12
33 + V 1

3 F 12
23 + V 2

3 F 11
23

]

This action contains infinite sets of auxiliary
and of gauge degrees of freedom. Fixing the
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WZ gauge and eliminating all auxiliary fields,
one finds the standard on-shell action of N = 3
SYM.

Grassi & van Nieuwenhuizen have obtained
the N = 3 SYM action from Witten’s open
string field theory action by dimensional re-
duction from 10 to 4 dimensions. The 10-d
pure spinors factorize into 4-d spinors and the
harmonics ui

I .
Quantization has been studied by Delduc &

McCabe. The Feynman rules resemble those
of the N = 2 HM and one can do power count-
ing which explains why the theory is finite.
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4 Towards an off-shell N = 4 SYM
theory

Attempts to reproduce the same mechanism in
the case of the full N = 4 SYM in d = 4 have
failed. A reformulation of the on-shell con-
straints as zero-curvature conditions and the
subsequent twistor transform are possible, but
no suitable measure for the corresponding CS
form exists.

An alternative (ES, 1988) could be provided
by the Euclidean version of N = 4 SYM in d =
5. In this case the Lorentz and R symmetry
groups are the same, SO(5) × SO(5). The
on-shell constraints have a symmetric form

{∇α i,∇β j} = Ωij∇αβ + ΩαβWij

where α, i = 1, 2, 3, 4 are USp(4) spinor in-
dices and Ω are symplectic matrices.

Zero-curvature conditions can be obtained
by projecting with harmonics on the coset
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SO(5)

SO(2)× SO(3)
∼ USp(4)

U(1)× SU(2)

Despite the apparent equivalence between Lorentz
and R-symmetry indices, the harmonic pro-
jection must be done on the Lorentz indices,
∇a

i = uα a∇α i with a = 1, 2 being SU(2)
indices, so that

{∇a
i ,∇b

j} = Ωijε
ab∇x , [∇a

i ,∇x] = 0

(the alternative would leave the non-vanishing

projected curvature εabui
au

j
bWij). Note that

the Lorentz harmonic variables are close rela-
tives of pure spinors which are being used for
covariant quantization of the superstring by
Berkovits.
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The twistor transform (this time even closer
to the original notion) replaces these constraints
by H-zero-curvature conditions

[∇ab,∇cd] = 0

involving the 3 covariant derivatives on the
harmonic coset∇ab = ∇ba = Dab+V ab. The
harmonic gauge connections are G-analytic:

V ab(x+, xcd, θc
i , u)

Here x±, xcd are Lorentz covariant light-cone
coordinates; G-analyticity now involves inde-
pendence on x− as well.

Most remarkably, there exists a suitable G-
analytic measure for the harmonic CS form
which allows to find an off-shell action:

S =

∫
du dx+ d3xab d8θa

i

ε(ab)(cd)(ef )Tr

[
V abDcdV ef +

2

3
V abV cdV ef

]
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Notice that the coupling constant has be-
come dimensionless and that the space-time
measure is 4- instead of 5-dimensional. This
seems to indicate an effective dimensional re-
duction from 5 to 4 dimensions, so the under-
lying theory after the twistor transform might
be N = 4 d = 4 SYM.

More work is needed to understand some
subtle points of this unusual formulation. If
successful, it might open up a new door to-
wards N = 8 supergravity and, who knows,
might give us the key to its finiteness?
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