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This talk tells a story of remarkable facts and 
controversies about a problem very simple to state:
Measurement x is unbiased Gaussian estimate of µ: 

p(x |µ) ∼ e –(x – µ)2 / 2σ2.
What is the 95% C.L. Upper Limit (UL) for µ if the 
physical model for p(x |µ) exists only for µ ≥ 0 ? 
Without the constraint on µ, traditional frequentist
and Bayesian methods both yield:

UL = x + 1.64σ,
and 95% C.L. central confidence interval is x ± 1.96σ. 
See next slide:
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Graphical display of intervals is a confidence belt: 
Confidence interval include all values of µ for which 
horizontal blue line is intersected. 

Upper limit = x + 1.64 σ Central interval = x ± 1.96 σ

µ=0
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With the constraint µ ≥ 0, the story takes us not only 
to the heart of Bayesians-frequentist disputes, but 
also to frequentist criticisms of Neyman & Pearson 
by Sir Ronald Fisher and Sir David Cox!

For x< −1.64σ with UL, and for x< −1.96σ with central 
intervals, the confidence interval is the null set!
I refer to the plot on left as the “diagonal line”. 

µ=0



The diagonal line rejects values of µ partially based 
on absolute χ2 rather than ∆χ2 with respect to best fit.
χ2(µ) = (x – µ)2 ; µ ≥ 0.
For x = –1: min χ2 is at µ=0:  χ2(µ=0) = 1. 
UL from diagonal line is UL = 0.64.
Note that χ2(µ =0.64) = (–1 – 0.64)2 =  2.70. 
Interval only includes µ for which χ2 itself (not ∆χ2 !) 
is less than “book value” ∆χ2 = 2.70 for 1-sided limit!  
Such “goodness of fit” intervals are known to have 
problem in other contexts.
So: try to use ∆χ2(µ) = χ2(µ) – χ2(µbest).
How to make correspondence between ∆χ2 and C.L.?  
The answer to that would not come until 1998.
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So, what did people in HEP do? 
The problem arose in experiments with true µ << σ, 
so that measured x<0 was common.
Some chose to move x<0 to physical boundary of µ.
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Phys Lett 19 253 (1965)
x = – 0.5 ± 2.5
Set x=0 and proceeded.  

PRL 19 1495 (1967)
x = – 0.06 ± 0.14
Set x=0 and proceeded.  
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With this ad hoc patch, UL = max(x,0) + 1.64σ.      
“95% C.L.” intervals had 100% coverage (!)  if µ < 1.64  

I’ll refer to this as the
“original Diagonal plus Horizontal Line”, 
“DHL” for short. 



Much thought was stimulated by experiments 
directly measuring neutrino masses in the 1970’s 
and 1980’s: 

νe mass (tritium β decay), 
νµ mass (π decay), and later 
ντ mass (τ decay).

Here x = mν
2 =  Eν

2 – pν
2 was typically Gaussian.

For mνe
2 , the issue became acute (with >1 lesson):

Bob Cousins.  Bayes...and the LHC, 12 Sep 2011 8

But even when obtaining x > 0, the presence of the 
boundary influenced some physicists.

1995 PDG RPP: 
“Caution is 
urged in 
interpreting this 
result” for UL. 
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Phys Rev D20 
2692 (1979)



These physicists, while perhaps unschooled in 
foundations of statistics, had important insights in 
the 1960’s through 1980’s. More progress with better 
foundations followed in the 1990’s. 
Gary Feldman and I concluded in 1998 that part of the 
problem was in rigidity of the question asked, 
advocating a Unified Approach with 2-sided intervals.
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Confidence Limits Workshops at 
CERN and Fermilab in 2000 
brought together many of us
(filled CERN Council Chamber), 
with adherents of three main 
methods, all in PDG RPP since 
2002.
http://cdsweb.cern.ch/record/411537/files/CERN-2000-005.pdf



Since 2000, statisticians have pointed us to yet 
more insights in their 50-year-old (!) literature that 
we in HEP had missed, and made fresh comments.
My conclusion, strengthened by these more recent  
insights: it is not wise for HEP to depart from the 
2000-era methods for upper limits and the Unified 
Approach.
The argument is deep and brings in more than one 
dispute among giants of 20th-century statistics.
So to explain why some of us have reached this 
conclusion, I’ll ask you to understand five 
ingredients, and then we’ll put them together.
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1) Bayes’s Theorem and Bayesian credible intervals
2) Neyman’s construction for confidence intervals, 

and the concept of coverage
3) Neyman-Pearson hypothesis testing, and 

concepts of Type I and Type II errors, and power
4) The equivalence between Neyman’s intervals and 

N-P hypothesis testing
5) *** Pre-data vs post-data inference, and 

probabilities conditioned on the observed data: 
Frequentist criticisms of most-powerful tests.

A bit of a “crash course”, but this simplest example 
is rich in statistical issues!
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Outline of Five Ingredients



P, Conditional P, and Derivation of Bayes’ Theorem       
in Pictures

A B
Whole space

P(B) × P(A|B) = × =

P(A) = P(B)  = 

P(A ∩ B) = 

P(B|A) = P(A|B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

⇒ P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins.  Bayes...and the LHC, 12 Sep 2011 13



What is the “Whole Space”?

For probabilities to be well-defined, the “whole 
space” needs to be defined, which in practice 
introduces assumptions and restrictions. 
Thus the “whole space” itself is conditional on the 
assumptions going into the model (possible 
outcomes.)
Furthermore, in frequentist statistics, restricting the 
“whole space” to a relevant subspace can sometimes 
improve the quality of statistical inference – this is a 
crucial point in the discussion below.
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Bayes’ Theorem Generalized to Probability Densities

Recall P(B|A) ∝ P(A|B) P(B). 
For Bayesian P, parameters are random variables which can 
appear in conditional probabilities.

Let p(x|µ) be conditional pdf for data x, given parameter µ.     
Then Bayes’ Theorem becomes
p(µ|x) ∝ p(x|µ) p(µ).
Substituting in a particular set of observed data, x0 :
p(µ|x0) ∝ p(x0|µ) p(µ).  Recognizing the likelihood,

p(µ|x0) ∝ L(x0|µ) p(µ)
p(µ|x0)  = posterior pdf for µ, given the results of this expt
L(x0|µ)  = L (µ) = Likelihood function of µ from this expt
p(µ) = prior pdf for µ, before updating with result of this expt
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The 1979 prescription alleged 
to be that of the PDG was 
numerically equivalent to:
p(x |µ)  ∼ e –(x – µ)2 / 2σ2.
⇒L (x0|µ) ∼ e –(x0 – µ)2 / 2σ2.
Prior p(µ) ∼ 1 if µ ≥ 0, else 0. 
Posterior p(µ|x0) ∝ L(µ) p(µ).
This is a prob. density in µ. 
Renormalize and integrate to 
find µUL with 5% tail probability.
This prescription did appear in 
PDG Review of Particle Physics 
since 1986.
Belt of Bayesian UL at right.

Daum, et al.



Confidence Intervals
“Confidence intervals”, and this phrase were 
invented by Jerzy Neyman in 1934-37. 
They use the frequentist definition of P.
The next two slides give some basic points.                          
It takes a bit of time to sink in – given how often 
confidence intervals are misinterpreted, the argument is 
perhaps a bit too ingenious.
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Neyman’s Confidence Interval construction

Given p(x|µ ) from a model: 
For each value of µ, draw a 
horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  1 – α.  
Upon performing expt and 
obtaining the value x0 , draw 
the vertical line through x0.  
The vertical confidence 
interval [µ1, µ2] with 
C.L. = 1 – α is the union of 
all values of µ for which the 
corresponding acceptance 
interval is intercepted by the 
vertical line.
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Confidence Intervals and Coverage
Let µt be the unknown true value of µ . In repeated 
experiments, confidence intervals will have different 
endpoints [µ1, µ2], since the endpoints are functions of the 
randomly sampled x.  
A little thought will convince you that a fraction C.L. = 1 – α
of intervals obtained by Neyman’s construction will contain 
(“cover”) the fixed but unknown µt . I.e.,  
P(µt ∈ [µ1, µ2]) =  C.L. = 1 – α.  
The endpoints µ1,µ2 are the random variables (!). 
Coverage is a property of the set of confidence intervals, 
not of any one interval.
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Neyman-Pearson Hypothesis Testing (1933)

Frame discussion in terms of null hypothesis, e.g.,             
H0 = S.M., and an alternative H1 = your favorite SUSY model.

α: probability (under H0) of rejecting H0 when it is true, i.e., 
false discovery claim (Type I error)

β: probability (under H1) of accepting H0 when it is false, i.e., 
not claiming a discovery when there is one (Type II error)

θ: parameters in the hypotheses

Competing hypothesis tests A, B, and C can be compared 
by looking at graphs of β vs α at various θ, and at graphs of 
β vs θ at various α (power function).
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N-P Hypothesis Testing (cont.)
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F. James, Statistical Methods in Experimental Physics, pp. 258, 262

Where to live on the β vs α curve is a long discussion.             
Decision to declare discovery requires two more inputs: 
1) Prior belief in H0 vs H1
2) Cost of Type I error (false discovery claim) vs cost of Type II 

error (missed discovery)
Which test is most powerful can depend on value of unknown θ.
(With no parameters, N-P Lemma proved L.R. test is m.p.) 



N-P tests and Neyman’s construction are equivalent
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The N-P test for θ=θ0 with Type I error probability α is 
equivalent to  “Accept H0 if θ0 is in the confidence 
interval for θ with C.L. = 1 – α”

“There is thus no need to derive optimum properties 
separately for tests and for intervals; there is a one-to-
one correspondence between the problems…”                  
– Kendall & Stuart
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Insights by Sir Ronald Fisher in 1956 
and Sir David Cox in 1958 pointed to 
situations in which Most Powerful 
Neyman-Pearson tests gave answers 
clearly not relevant to the data at hand!  
The basic idea is that sometimes there are 
“recognizable subsets” of the sample space (x) for 
which the N-P C.L. (computed from the whole space) 
is in conflict with properties of the subset.
In our problem, we are clearly in this situation when 
the “upper limit” is null or unphysical: conditional 
probability of coverage within that recognizable part 
of the sample space is zero!
A whole literature.  First, a simple clean example.
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Let p(x |µ)  =  1 if µ –½ ≤ x ≤ µ +½ ; 0 otherwise.

Two measurements x1,x2 are made.  
What is a central confidence interval for µ ?
Most Powerful one-sided N-P tests lead to the      
68% C.L. central interval µ = (x1 + x2)/2 ± 0.22. 
This uncertainty is determined by the ensemble of   
all possible measurements x1,x2.  
It is a pre-data assessment of uncertainty. 

P(x|µ)

µ µ+½µ−½

x



But once data is in hand, if |x1–x2| is close to 1, we 
know that we have a much more accurate 
measurement of µ for our particular “lucky” data. 

The “relevant” post-data assessment of uncertainty
about µ depends on |x1–x2|, which can be used to 
partition the sample space into recognizable 
subsets. 
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L1(µ)

x1

µ

L2(µ)

x2

µ
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In clean cases with such as this, the coverage of the 
conditional statements in the unconditional 
ensemble is exact, though power is less.  
In the 1980’s, Günter Zech attempted (in the related 
Poisson problem) to build in exact conditional 
coverage from the beginning of the construction of 
upper limits on a bounded parameter.  His 
calculation, which inspired CLS, leads to              
over-coverage in the unconditional ensemble.
In 2002, statistician Gleser pointed us to 1959+ 
literature on conditional coverage as a tool for 
evaluating confidence sets built to have perfect 
unconditional coverage.
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2002: Physicist Mark Mandelkern writes Statistics 
review article asking statisticians for advice (!)

…                                                         

Editor asks five statisticians to Comment.            
Leon Jay Gleser is truly incisive, emphasizing:
“…the predata measure of risk is not necessarily the 
correct postdata measure of uncertainty.”
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More from Leon Jay Gleser

“The subset of samples having the property that the 
sample mean is two standard deviations to the left of 
zero would have been called a ‘recognizable subset’ 
by Fisher (1956).” 
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More from Leon Jay Gleser

“Buehler (1959), and later Robinson (1979), 
introduced the notion of conditionally admissible 
tests and confidence intervals—those procedures 
whose frequentist control of error (coverage 
probability, level of significance) was not adversely 
affected by the realization that a given data set 
belonged to a recognizable subset of samples.”
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More from Leon Jay Gleser

“…any confidence intervals that keep a constant 
width as X becomes more negative, as some of the 
physicists seem to desire, are indicating not 
necessarily what the data shows through the model 
and likelihood, but rather desiderata imposed 
external to the statistical model.”
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Betting Game Inspired by Buehler (1959)

Suppose Peter uses a set of confidence intervals with 
perfect coverage, P(µt ∈ [µ1, µ2]) = C.L. = 1– α. 
Paula proposes that Peter be willing to bet at odds         
(1– α)/α that µt ∈ [µ1, µ2] in repetitions of the experiment, 
and that Paula gets to decide whether or not to accept 
the bet using only the information available to Peter, 
namely P(x|µ) and the value of x observed.
Peter accepts… his intervals have exact coverage!
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Betting Game Inspired by Buehler (cont.)

Suppose Paula identifies a set C in the sample space 
such that if x∈C, then P(µt ∈ [µ1, µ2]) < 1 – α for all µt .
In the rectangular example above, such a set C can be 
simply defined by |x1–x2| being small enough.

Paula can win in long term by betting (only) when x∈C!
The existence of such set C, called a negatively biased 
relevant subset, strongly calls into doubt the use of    
pre-data uncertainty (coverage) as post-data uncertainty!

L1(µ)

x1

µ

L2(µ)

x2

µ

µ = (x1 + x2)/2 ± 0.22      
under-estimates uncertainty 
when |x1–x2| << 1
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So let’s return to the upper limits of the 
“original diagonal line”, with new insights.
We always knew that Paula could win by 
accepting bet when x < –1.64.  
Fred James and I called this the problem of 
“What do I do when I know I am in the wrong 5%?”
So Paula can select bets with 0% chance of losing. 
But to win in the long run, she need only select bets with 
probability of losing strictly less than 95%! 
This can be easily done: Choose any constant K, and 
consistently accept the bet if and only if x<K.
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For example, Paula can define a relevant subset C by
x : x<0.7.  So she bets against Peter's assertion that 
µt ≤ UL at 19:1 odds whenever x<0.7.  
To see how she fares, we need to calculate, for each µ, 
the conditional coverage probability 
P(µt ≤ UL | x<0.7) =  P(x ≥ µt – 1.64 | x<0.7).  
This probability is maximum for µt =0, in which case it is 
P(x ≥ – 1.64 | x<0.7), for P(x) =  Gaussian with mean 0.
Answer: 1 – (0.05/0.758) = 93.4%, negatively biased. 
The true conditional odds in Peter's favor are at most 
0.934/(1 – 0.934), about 14:1, so Paula will win in the long 
run if Peter pays out at 19:1 odds on the bets she makes.
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Fraction of Bets won by Peter depends on true µt .
Maximum Fraction of Bets Won by Peter when Paula 
bets against His 95% C.L. UL for x<K, as Function of K:

For K=0, failure 
to cover is twice 
(1 – C.L.).
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This result quantifies the difficulty understood 
intuitively by past physicists, and connects it to a 
body of statistics literature going back 50+ years!
Our simply stated problem is in one of the thorniest 
corners of the statistics literature: what to do when 
one knows post-data that the pre-data coverage 
probability is inapplicable to the “recognizable 
subset” containing the observed x. 
The BIG LESSON: if all your discussions/arguments 
consider only N-P coverage and power, you can be 
missing important considerations about post-data 
inference.
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Deep Connections to Bayesian Statistics
Furthermore, a number of theorems have been 
proved in the last 50 years making connections 
between:
• Good frequentist conditional coverage properties 
• The existence of any prior for which the Bayesian 

credible set resembles the confidence set.
Taking “resembles” to the extreme leads to the 
likelihood principle and breakdown in unconditional 
coverage.  
But as a useful guide for when post-data inference 
can be misleading, this is a remarkable deep 
connection between frequentist confidence intervals 
(statements about P(data|parameter)) and credible 
intervals (statements about P(parameter|data)) !
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Deep Connections to Bayesian Statistics (cont.)

Beginning in 2000, statistician Jim Berger has 
argued at four of our meetings that bad conditional 
properties can be so hard to detect in frequentist
methods that one is better off using Bayesian 
methods with priors known to have approximate 
unconditional coverage.



Jim Berger:
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1) 1960’s and beyond:                                  
UL = max(x, 0) + 1.64σ

2) 1979 “PDG” (real 1986 PDG) and beyond:                
Bayesian with uniform prior

3) 1997: Alex Read et al. (LEP)                   
CLS

4) 1997: Feldman and Cousins (NOMAD)      
Unified Approach

5) 2010: Power Constrained Limits;   
Cowan, Cranmer, Gross, Vitells (ATLAS): 
UL = max(0, max(x, xPCL) + 1.64σ)

Five methods used for bounded Gaussian mean problem
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Bayesian with Uniform Prior
Tradition in HEP is to use uniform 
prior for both Gaussian mean and 
Poisson mean.  Leads to over-
coverage in Poisson with bkgnd.
Modern “objective” Bayesians 
use uniform prior for Gaussian 
mean but Jeffreys prior 1/√µ for 
Poisson mean.  This leads to 
undercoverage for some µ.
Bayesian derivation replaces 
sensitivity to irrelevant data with 
sensitivity to prior.  
In HEP, there is good experience 
with priors in low dimensions, 
some naïveté in high D.

Recent (2010) work on 
“reference priors” 
(Demortier, Jain, 
Prosper) may lead to 
shift in priors used in 
HEP.
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CLS

In 1988, for Poisson-with-
background problem, Günter 
Zech performed a frequentist
construction of upper limits using 
non-standard conditional 
probabilities.  It gave the same 
numerical results as O. Helene’s 
Bayesian calculation (P(µ) flat).
In 1997, Alex Read et al 
interpreted Zech’s formula as 
ratio of two tail probabilities and 
applied it more generally: CLS.
For the current problem, it again 
gives same result as Bayesian  
with P(µ) flat (!).



Bob Cousins.  Bayes...and the LHC, 12 Sep 2011 43

Foundations (?) of CLS

As an intuitive development in HEP, it appears 
that a firm foundation  for CLS is lacking. 
From Alex Read in 2000 CLW Yellow Report: 
A confidence limit is an upper limit if the 
exclusion confidence is less than the specified 
confidence level for all values of the population 
parameter above the confidence limit.
“Note that confidence intervals obtained in this 
manner do not have the same interpretation as 
traditional frequentist confidence intervals nor as 
Bayesian credible intervals.” (italics in original)
BC: both CLS’s “reasonable” performance and its 
over-coverage are probably related to its roots in 
Bayesian answers for simple problems, with flat 
prior in Poisson mean avoiding problems for UL. 
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Unified Approach of Feldman and Cousins
Starting points:                              
1) Remove null intervals               
2) 95% coverage for all µ.
Immediately: 95% acceptance 
interval for µ=0 is [– ∞, 1.64].                     
Leads to Unified Approach: [µ1,µ2]
1) For low and negative x, µ1=0.
2) µ=0 excluded when rejected 

by one-tailed test  at 1–C.L. (!)
3) At large x, [µ1,µ2] converges to 

central interval.
[Above seen by S. Ciampolillo, 
who also moved x<0 to 0.] F-C:
4) Interval based on ∆χ2 (L.R.)
5) Cures “flip-flop” problem. Phys Rev D57 3873 (1998) 
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Unified Approach of Feldman and Cousins (cont.)
With diagonal line, interval uses χ2

instead of ∆χ2. Recall above:        
“How to make correspondence 
between ∆χ2 and C.L.?”
F-C: associate a value of ∆χ2 = 
χ2(µt) – χ2(µbest) with each true
value µt. The endpoints of its 
acceptance interval have that ∆χ2.
Acceptance interval has those 
values of x ranked in 95% by ∆χ2.
Given x0, confidence interval 
contains those values of µ for 
which x0 is in top 95% rank by ∆χ2. 
Automatically includes or  
excludes µ=0 based on ∆χ2. 
Works for 3σ, 5σ as one wishes.



“Test for θ=θ0” ↔
“Is θ0 in confidence interval for θ”

Using the Likelihood Ratio Test, this 
correspondence is the basis of the 
“Unified Approach” 
intervals/regions of F-C. 
In Gaussian problem, –2ln(LR) = ∆χ2.
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Kendall and Stuart

Phys. Rev. D57 3873 (1998)
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Limits of Cowan, Cranmer, Gross, and Vitells (CCGV)

Before Power Constraint: uses ∆χ2

but forces acceptance interval to 
be one-sided, even on boundary.
Result: same old diagonal line as 
with absolute χ2, except with null 
intervals replaced by 
UL=0  for x < –1.64. 
Coverage of µ=0 is 100% (!) 

http://arxiv.org/abs/1105.3166

CCGV one-sided ∆χ2

UL=0
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Recall: With original diagonal line, 
Paula can guarantee that odds in 
Peter’s favor are no better than e.g.,  
14:1 odds by betting when x<0.7. 
In whole “relevant subset” 
literature, acceptance regions have 
p(x ∈ [x1,x2] | µ ) = C.L.
But CCGV acceptance region for    
µ = 0 has p=100%, not 95% !

CCGV one-sided ∆χ2

UL=0

CCGV and the Betting Game

With 100% unconditional coverage for a single value of µ,  
all the math based on “suprema” of conditional coverage of 
course breaks down.  How (or whether) to adapt whole 
literature is not agreed on.  I think it is hard to claim that the 
problem simply disappeared.  N.B. Paula wins if µt has 
acceptance region p(x ∈ [x1,x2] | µt ) = C.L. (!)



Power Constraint (PC) added by   
hand to avoid excluding values of µ
for which N-P power below cutoff.
ATLAS PCL at first used PC=16%, i.e.,          
UL = 0.64 for x ∈ [– ∞, –1]  (shown)
Compare with 1960s original DHL,    
UL = 1.64 for x ∈ [– ∞, 0].
ATLAS revisited the value of PC,   
more recently used 50% PC: 
corresponds to original DHL (!).  
DHL is what set everyone looking     
for better alternatives in 1970’s, 
1980’s, and 1990s (!) 
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Power Constrained Limits of CCGV

http://arxiv.org/abs/1105.3166

CCGV with 16% PC:
ATLAS publications

Original 1960s DHL
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Discussion

From three rather different perspectives, authors of 
Bayesian, CLS, and F-C rejected original diagonal 
line.  Recent insight into conditional coverage 
supports this conclusion. 
Adding µ values with 100% coverage muddies 
situation, but I see no advantage to returning to 
Diagonal plus Horizontal Line methods.                   
DHL with 16% power constraint was a material 
change in HEP traditions.
Of all above methods, only F-C Unified Approach has 
coverage = C.L. for all µ; generalizes well; and 
ameliorates several issues.
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“But Bob, I insist on an upper limit!”
“Do I need to define upper for you?”

Bob:  Let’s consider two deep points.
1) Insisting on a CCGV upper limit means insisting 
on not rejecting µ = 0 at 95% while simultaneously 
rejecting µ which has a better ∆χ2 than µ = 0 (say 
when x = 2).   This is related to the “extra” power of 
CCGV upper limit when it  rejects µ = 1 when x = –1.
2) Insisting on an upper limit means insisting on 
over-coverage (unless null intervals are brought 
back).  Intervals with correct coverage, based on ∆χ2, 
allow for more relevant and interpretable post-data 
inference.
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“But Bob, CCGV intervals have more power!”

Bob:
The most powerful confidence belt is the original 
diagonal line with null intervals.  It also has perfect 
coverage. 
Yet it bothers most of us. Power is a pre-data 
concept which must be supplemented by post-data 
considerations.
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“But Bob, I don’t want to exclude µ=0 unless I have 5σ! ”

Bob:  Let’s consider two more points.
1) Reporting a 95% interval which does not include 
µ=0 is not declaring discovery (or evidence, or 
indication, or…).  
The F-C interval is reporting those values of µ which 
have the best ∆χ2(µ) = χ2(µ) – χ2(µbest) given the 
observed x.  That would seem to be very useful!
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“But Bob, I don’t want to exclude µ=0 unless I have 5σ! ”

2) A very useful number to report is that value of C.L. 
for which µ=0 is just included in the F-C interval.  
E.g., for x=2, µ=0 is in the 97.72% C.L. F-C interval.  
(1- C.L.FC is just the one-sided p-value for 2σ.)          
Or one can quote the number of sigma.                  
This is in fact what we are used to doing!                    
It all falls out naturally from the “Unified” Approach.
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“But Bob, isn’t µ too tightly constrained when x<<0?”

Bob: Gleser (above) points out this behavior 
is consistent with the likelihood principle.  
It does however call into question the model:       
the assumption of Gaussian shape and value of σ.
Statistician Woodroofe commenting on Mandelkern: 
``The unified method…clearly provides an 
improvement over the Neyman intervals…however, 
…it can produce unbelievably short intervals.'‘
Woodroofe & Sen (2009): add uncertainty to σ, leads 
to looser constraint for x<<0. This could be more 
fruitful approach than power constraint.
I think it’s a better fit to physicist’s thinking (and was 
in fact the answer for electron neutrino mass!)
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Poisson with Background Problem
Not all difficulties are exposed with the Gaussian 
problem, and the best-founded objection to F-C is in 
the Poisson problem with zero events observed.
That’s another talk!  I just note that the PCL version 
of the battle-ground plot has not been publicized by 
PCL advocates, as far as I know.

1996 PDG RPP, a la Helene or Zech
1998 PDG RPP, a la Feldman & Cousins
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Conclusion

Since 2002, the PDG RPP has had a menu of choices 
that is quite sufficient from my point of view.
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F-C
Traditional central
Traditional upper

Unified and Un-Unified Intervals
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Feldman-Cousins for Two-sided Bound -1 ≤ µ ≤ 1, σ=1 
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Flip-Flop Plot
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Comparison of ATLAS 16% PCL with the 3 methods in PDG

(Atlas unconstrained U.L. is zero, not null, for x < -1.64)
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L. Demortier
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1 = pure classical
2=truncated classical
3=shifted classical
4=Bayesian
5=Shifted bayesian, 
6=McFarlane loss of confidence

Upper limit on mean of
Gaussian based on one 
sample, x.

Physical values of 
mean are non-negative.

Numbers are in units of
sigma (Gaussian rms).
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Efron Comparison of F-C and Bayesian Model Selection
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Features of 95% C.L. F-C intervals:
µ=0 is lower endpoint of interval until x is so large 
that one-tailed test excludes µ=0 at 95% (x > 1.64)
At x=0, interval is [0,1.96] (in contrast to µ < 1.64).
For x<0, interval becomes more restrictive as x
becomes more negative.
For x >>1, the F-C interval converges to the 95% C.L. 
central interval, x ± 1.96.
Coverage is exactly 95% for all values of µ.
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Comparison of limit/interval for x = –1.
1) UL = max(x,0) + 1.64 = 0 + 1.64 = 1.64
2) Bayesian with flat prior: UL= 1.41
3) CLS: UL= 1.41
4) Unified Approach interval a la F-C: [0, 1.10].        

µbest = 0; χ2(µbest) = 1. Interval includes µt for 
which ∆χ2 < critical ∆χ2 for that µt .

5) 16% PCL with xPCL = –1: UL = max(0, max(x, –1) + 
1.64) = max(0, –1 + 1.64)  = 0.64.                       
Note that χ2(µ =0.64) = (– 1 – 0.64)2 =  2.70. Interval 
includes µt for which χ2 (not ∆χ2 !) is less than the 
“book value” ∆χ2 = 2.70 for one-sided limit!  In 
effect, this brings in goodness-of-fit to the model. 
(Sec. 4C of F-C paper).
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