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This talk tells a story of remarkable facts and
controversies about a problem very simple to state:

Measurement x is unbiased Gaussian estimate of u:
p(x|) ~ &~ -a"125"

What is the 95% C.L. Upper Limit (UL) for uif the
physical model for p(x|u) exists only for u>0 ?

Without the constraint on g, traditional frequentist
and Bayesian methods both yield:

UL=Xx+ 1.640,

and 95% C.L. central confidence interval iIs x + 1.960.
See next slide:
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Graphical display of intervals is a confidence belt:
Confidence interval include all values of g for which
horizontal blue line is intersected.
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With the constraint £ = 0, the story takes us not only
to the heart of Bayesians-frequentist disputes, but
also to frequentist criticisms of Neyman & Pearson

by Sir Ronald Fisher and Sir David Cox!
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For x<-1.64c with UL, and for x<-1.96¢c with central
Intervals, the confidence interval is the null set!

| refer to the plot on left as the “diagonal line”.
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The diagonal line rejects values of g partially based
on absolute y2rather than Ay? with respect to best flt.

) = (X — ) ; u20.
For x ==1: min y?is at £=0: ¥?(u=0)=1
UL from diagonal line is UL = 0.64.
Note that y%(x=0.64) = (-1 — 0.64)° = 2.70.

Interval only includes g for which y? itself (not Ay? I)
Is less than “book value” Ay? =2.70 for 1-sided limit!
Such “goodness of fit” intervals are known to have
problem in other contexts.

So: try to use Ax*(g) = x*(1) — X*(Hpest)-
How to make correspondence between Ay? and C.L.?
The answer to that would not come until 1998.
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So, what did people in HEP do?

The problem arose in experiments with true u << o,
so that measured x<0 was common.

Some chose to move x<0 to physical boundary of L.

A SEARCH FOR THE DECAY 70 — 3y *-

J.DUCLOS **, D. FREYTAG, K. SCHLﬁPMANN and V.SOERGEL
CERN, Geneva, Switsevland

J. HEINTZE and H. RIESEBERG
I. Phystkalisches Institut des Universitil Heidelberg, Germany

NEUTRAL DECAY BRANCHING RATIOS OF THE n° MESON
C. Baltay,{ P. Franzini, J. Kim, R. Newman, and N. Yeh

Columbia University, New York, New York, and Brookhaven National Laboratory, Upton, New York

L. Kirsch

Brandeis University, Waltham, Massachusetts
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Phys Lett 19 253 (1965)
X=-05x25
Set x=0 and proceeded.

PRL 19 1495 (1967)
Xx=-0.06+0.14
Set x=0 and proceeded.



With this ad hoc patch, UL = max(x,0) + 1.64c.
“95% C.L.” intervals had 100% coverage (!) iIf u<1.64
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I'll refer to this as the
“original Diagonal plus Horizontal Line”,
“DHL” for short.
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Much thought was stimulated by experiments
directly measuring neutrino masses in the 1970’s

and 1980’s:

v, mass (tritium 3 decay),
v, mass (r decay), and later

v, mass (t decay).

Herex =m ?= E?—-p 2 was typically Gaussian.

For mve2 , the Issue became acute (with >1 lesson):

VALUE (e¥2)

— 54+ 30 OUR AVERAGE
— 39% 34+ 15
— 24% 48+ 61
— 65 85k 65
—147+ 638+ 41

DOCUMENT 1D TECN

COMMENT

14 WEINHEIMER 93 SPEC
15 HOLZSCHUH 928 SPEC
16 KAWAKAMI 91 SPEC
17 ROBERTSON 91 SPEC

3Hza decay
SHs decay
Vg, tritium
Vg, tritium

1995 PDG RPP:
“Caution is
urged in
interpreting this
result” for UL.

But even when obtaining x > 0, the presence of the
boundary influenced some physicists.
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Precision measurement of the muon momentum in pion decay at rest

M. Daum, G. H. Eaton, R. Frosch, H. Hirschmann, J. McCulloch,* R. C. Mmehaxt and E. Steiner
Swiss Institute for Nuclear Research, SIN, 5234 Villigen, Switzerland

m,ﬂ2='0.13i0.14 (MeV/¢?)? PhyS Rev D20

Following the method recommended by the Par- 2692 (1979)

ticle Data Group,® illustrated in Fig. 22, we cal-

culated the upper limit of the muon-neutrino mass.
The result is

m,  <0.57 MeV/c? (90% confidence level). (9)

FM?) A&
(am?, V21)"1)
M 1
T L T b
-0.2 0 m%y 0.2 mé 0.4 [[Mev)?/c*)

FIG. 22, According to the prescription of the Particle
Data Group (Ref. 33) the upper limit m; of the muon-
neutrino mass is calculated from the squares mass m,
and its uncertainty A(me, 2) by setting the probability

function F(M?) to zero for M%< 0, as indicated in the fig—
ure.

. T, G. Trippe, private communication, 1976,
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These physicists, while perhaps unschooled in
foundations of statistics, had important insights in
the 1960’s through 1980’s. More progress with better
foundations followed in the 1990’s.

Gary Feldman and | concluded in 1998 that part of the
problem was in rigidity of the question asked,
advocating a Unified Approach with 2-sided intervals.

CERN 2000-005
30 May 2000

Confidence Limits Workshops at
CERN and Fermilab in 2000

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

broug ht together many Of US CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
(filled CERN Council Chamber),

with adherents of three main svREHOP NGOG
methods, all in PDG RPP since

2002. -

http://cdsweb.cern.ch/record/411537/files/CERN-2000-005.pdf

PROCEEDINGS
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Since 2000, statisticians have pointed us to yet
more insights in their 50-year-old (!) literature that
we in HEP had missed, and made fresh comments.

My conclusion, strengthened by these more recent
Insights: it is not wise for HEP to depart from the
2000-era methods for upper limits and the Unified
Approach.

The argument is deep and brings in more than one
dispute among giants of 20t"-century statistics.

So to explain why some of us have reached this
conclusion, I'll ask you to understand five
Ingredients, and then we’ll put them together.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Outline of Five Ingredients

1) Bayes’s Theorem and Bayesian credible intervals

2) Neyman’s construction for confidence intervals,
and the concept of coverage

3) Neyman-Pearson hypothesis testing, and
concepts of Type | and Type Il errors, and power

4) The equivalence between Neyman’s intervals and
N-P hypothesis testing

5) *** Pre-data vs post-data inference, and
probabilities conditioned on the observed data:
Frequentist criticisms of most-powerful tests.

A bit of a “crash course”, but this simplest example
IS rich In statistical issues!

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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P, Conditional P, and Derivation of Bayes’ Theorem
In Pictures ’

@D
P(A) = —— P(B) = ——
] ]

Whole space

¢
‘B P(A|B) = D P(B|A) =

¢
PANB)= i

4 4

P(A) x P(B|A) = ‘ X 0 = = P(A N B)
4 4

P(B) x P(A|B) = ; @ = P(A N B)
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What is the “Whole Space”?

For probabilities to be well-defined, the “whole
space” needs to be defined, which in practice
Introduces assumptions and restrictions.

Thus the “whole space” itself is conditional on the
assumptions going into the model (possible
outcomes.)

Furthermore, in frequentist statistics, restricting the
“whole space” to arelevant subspace can sometimes
Improve the quality of statistical inference —this is a
crucial point in the discussion below.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Bayes’ Theorem Generalized to Probability Densities

Recall P(B|A) «« P(A|B) P(B).
For Bayesian P, parameters are random variables which can
appear in conditional probabilities.

Let p(x|n) be conditional pdf for data x, given parameter p.
Then Bayes’ Theorem becomes

P(ux) o p(x|) p(w).
Substituting in a particular set of observed data, X, :
P(uX,) < p(Xol) p(u). Recognizing the likelihood,

P (udXo) o L(Xo|29) p(n)
p(ulx,) = posterior pdf for 4, given the results of this expt

L(xol) = L (1) = Likelihood function of gfrom this expt
pP(w) = prior pdf for 4, before updating with result of this expt

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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The 1979 prescription alleged
to be that of the PDG was
numerically equivalent to:

p(x |w) ~ etx-wri2e”

:>£ (XOlﬂ) ~ e—(XO_lu)Z/Zo'ZI

Prior p(u) ~1if u>0, else 0.
Posterior p(ulx,) oc L(1) p(L).
This is a prob. density in L.
Renormalize and integrate to
find g, with 5% tail probability.

This prescription did appear in
PDG Review of Particle Physics
since 1986.

Belt of Bayesian UL at right.
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FIG. 22, According to the prescription of the Particle
Data Group (Ref. 33) the upper limit m, of the muon-
neutrino mass is calculated from the squares mass m,
and its uncertainty A(m, %) by setting the probability

. 9 ( 2 N . .
function F(M*) to zero for M*“<0, as indicated in the fig-
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Confidence Intervals

“Confidence intervals”, and this phrase were
iInvented by Jerzy Neyman in 1934-37.
They use the frequentist definition of P.

The next two slides give some basic points. “

It takes a bit of time to sink in — given how often
confidence intervals are misinterpreted, the argument is
perhaps a bit too ingenious.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Neyman’s Confidence Interval construction

Given p(xX|u ) from a model:
For each value of g4, draw a
horizontal acceptance
Interval [X;,X,] such that

P(X € [X3. %] [ ) = 1-a.
Upon performing expt and
obtaining the value x,, draw
the vertical line through x,.

The vertical confidence e S S T NV O PP O |
interval [y, 1] with Measured Mean x
C.L.=1-oalistheunion of

all values of ufor which the

corresponding acceptance

Interval is intercepted by the

vertical line.
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Confidence Intervals and Coverage

Let w4 be the unknown true value of x4 . In repeated
experiments, confidence intervals will have different
endpoints [, ], since the endpoints are functions of the
randomly sampled x.

A little thought will convince you that a fraction C.L.=1 -«
of intervals obtained by Neyman’s construction will contain
(“cover”) the fixed but unknown g . l.e.,

Pl € [, ]) = CL.=1-a.
The endpoints y,,u, are the random variables (!).

Coverage is a property of the set of confidence intervals,
not of any one interval.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Neyman-Pearson Hypothesis Testing (1933)

Frame discussion in terms of null hypothesis, e.g.,

H, = S.M., and an alternative H; = your favorite SUSY model.

a: probability (under H) of rejecting H, when it is true, i.e.,
false discovery claim (Type | error)

B: probability (under H,) of accepting H, when it is false, i.e.,
not claiming a discovery when there is one (Type |l error)

0. parameters in the hypotheses

Competing hypothesis tests A, B, and C can be compared
by looking at graphs of B vs a at various 0, and at graphs of
B vs 0 at various a (power function).

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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N-P Hypothesis Testing (cont.)

1

power

p(6)

0 : . —»
o o' & 0

Fig. 10.3. Power functions of tests A, B, and C at significance level a. Of these three tests
B is the best for & > #'. For smaller values of &, C is better.

Where to live on the B vs a curve is a long discussion.

Decision to declare discovery requires two more inputs:

1) Prior belief in Hy vs H,

2) Cost of Type | error (false discovery claim) vs cost of Type Il
error (missed discovery)

Which test is most powerful can depend on value of unknown 0.

(With no parameters, N-P Lemma proved L.R. testis m.p.)

F. James, Statistical Methods in Experimental Physics, pp. 258, 262
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N-P tests and Neyman’s construction are equivalent

The N-P test for =0, with Type | error probability a IS
equivalentto “Accept H, if 8, 1s in the confidence
Interval for@with C.L.=1 - ao”

“There is thus no need to derive optimum properties
separately for tests and for intervals; there is a one-to-
one correspondence between the problems...”

— Kendall & Stuart
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Insights by Sir Ronald Fisher in 1956
and Sir David Cox in 1958 pointed to
situations in which Most Powerful
Neyman-Pearson tests gave answers
clearly not relevant to the data at hand!

The basic idea Is that sometimes there are
“recognizable subsets” of the sample space (x) for
which the N-P C.L. (computed from the whole space)
IS In conflict with properties of the subset.

In our problem, we are clearly in this situation when
the “upper limit” is null or unphysical: conditional
probability of coverage within that recognizable part
of the sample space is zero!

A whole literature. First, a simple clean example.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Letp(X|p) = 1if u—%<x< u+Y2; 0 otherwise.

P(x]| )

X
<€

A
Two measurements x,,X, are made.
What is a central confidence interval for g ?

Most Powerful one-sided N-P tests lead to the
68% C.L. central interval u= (X; + X,)/2 £ 0.22.

This uncertainty is determined by the ensemble of
all possible measurements x,X,.

It Is a pre-data assessment of uncertainty.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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But once data is in hand, if |x;—X,| Is close to 1, we
know that we have a much more accurate
measurement of g for our particular “lucky” data.

L)
<€ | )’u
X3
L,(1)
<€ . )’u

The “relevant” post-data assessment of uncertainty
about g depends on |[x;—X,|, which can be used to

partition the sample space into recognizable
subsets.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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In clean cases with such as this, the coverage of the
conditional statements in the unconditional
ensemble is exact, though power is less.

In the 1980’s, Glunter Zech attempted (in the related
Poisson problem) to build in exact conditional
coverage from the beginning of the construction of
upper limits on a bounded parameter. His
calculation, which inspired CLg, leads to
over-coverage in the unconditional ensemble.

In 2002, statistician Gleser pointed us to 1959+
literature on conditional coverage as a tool for

evaluating confidence sets built to have perfect
unconditional coverage.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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2002: Physicist Mark Mandelkern writes Statistics
review article asking statisticians for advice (!)

Setting Confidence Intervals for

STATISTICAL
Bounded Parameters SCIENCE

Mark Mandelkern

Abstract.  Setting confidence bounds is an essential part of the reporting of
experimental results. Current physics experiments are often done to measure

nonnegative parameters that are small and may be zero and to search for small
signals in the presence of backgrounds. ...

Editor asks five statisticians to Comment.
Leon Jay Gleser is truly incisive, emphasizing:

“...the predata measure of risk is not necessarily the
correct postdata measure of uncertainty.”

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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More from Leon Jay Gleser

“The subset of samples having the property that the

sample mean is two standard deviations to the left of
zero would have been called a ‘recognizable subset’

by Fisher (1956).”

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

28



More from Leon Jay Gleser

“Buehler (1959), and later Robinson (1979),
Introduced the notion of conditionally admissible
tests and confidence intervals—those procedures
whose frequentist control of error (coverage
probability, level of significance) was not adversely
affected by the realization that a given data set
belonged to arecognizable subset of samples.”

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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More from Leon Jay Gleser

“...any confidence intervals that keep a constant
width as X becomes more negative, as some of the
physicists seem to desire, are indicating not
necessarily what the data shows through the model
and likelihood, but rather desiderata imposed
external to the statistical model.”

Bob Cousins. Bayes...and the LHC, 12 Sep 2011 30



Betting Game Inspired by Buehler (1959)

Suppose Peter uses a set of confidence intervals with
perfect coverage, P(x € [, 1]) =C.L. = 1-a.

Paula proposes that Peter be willing to bet at odds

(1- a)/a that 1 € [1y, ] In repetitions of the experiment,
and that Paula gets to decide whether or not to accept
the bet using only the information available to Peter,
namely P(x|x) and the value of x observed.

Peter accepts... his intervals have exact coverage!

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Betting Game Inspired by Buehler (cont.)

Suppose Paula identifies a set C in the sample space
such that if xeC, then P(x, € [y, ]) <1 —a for all 4 .

In the rectangular example above, such a set C can be
simply defined by |x,—x,| being small enough.

L(y)
<€ I > i i
X, under-estimates uncertainty
L,(p) when |x,;—x,| <<'1
<€ I J),u

Paula can win in long term by betting (only) when xeC!

The existence of such set C, called a negatively biased
relevant subset, strongly calls into doubt the use of
pre-data uncertainty (coverage) as post-data uncertainty!

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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So let’s return to the upper limits of the Eé

“original diagonal line”, with new insights. [

We always knew that Paula could win by ,E

accepting bet when x <-1.64.

Fred James and | called this the problem of i

“What do | do when | know | am in the wrong 5%7?”

So Paula can select bets with 0% chance of losing.
But to win in the long run, she need only select bets with
probability of losing strictly less than 95%!

This can be easily done: Choose any constant K, and
consistently accept the bet if and only if x<K.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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For example, Paula can define a relevant subset C by
X : X<0.7. So she bets against Peter's assertion that
i <UL at 19:1 odds whenever x<0.7.

To see how she fares, we need to calculate, for each g,
the conditional coverage probability

P(x <UL | x<0.7) = P(x 2 g — 1.64 | x<0.7).

This probability is maximum for g =0, in which case it is
P(x >2—1.64 | x<0.7), for P(x) = Gaussian with mean O.
Answer: 1 — (0.05/0.758) = 93.4%, negatively biased.

The true conditional odds In Peter's favor are at most
0.934/(1 — 0.934), about 14:1, so Paula will win in the long

run if Peter pays out at 19:1 odds on the bets she makes.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Fraction of Bets won by Peter depends on true g .

Maximum Fraction of Bets Won by Peter when Paula

bets against His 95% C.L. UL for x<K, as Function of K:
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For K=0, failure
to cover Is twice
(1-C.L.).
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This result quantifies the difficulty understood
Intuitively by past physicists, and connects it to a
body of statistics literature going back 50+ years!

Our simply stated problem is in one of the thorniest
corners of the statistics literature: what to do when
one knows post-data that the pre-data coverage
probability is inapplicable to the “recognizable
subset” containing the observed X.

The BIG LESSON: if all your discussions/arguments
consider only N-P coverage and power, you can be
missing important considerations about post-data
Inference.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Deep Connections to Bayesian Statistics

Furthermore, a number of theorems have been
proved in the last 50 years making connections
between:

 Good frequentist conditional coverage properties

 The existence of any prior for which the Bayesian
credible set resembles the confidence set.

Taking “resembles” to the extreme leads to the
likelihood principle and breakdown in unconditional
coverage.

But as a useful guide for when post-data inference
can be misleading, this is a remarkable deep
connection between frequentist confidence intervals
(statements about P(data|parameter)) and credible
Intervals (statements about P(parameter|data)) !

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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Deep Connections to Bayesian Statistics (cont.)

Beginning in 2000, statistician Jim Berger has
argued at four of our meetings that bad conditional
properties can be so hard to detect in frequentist
methods that one is better off using Bayesian
methods with priors known to have approximate
unconditional coverage.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

38



Workshop on
Confidence Limits

27-28 March, 2000
Fermilab 1-West Conference Room
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Five methods used for bounded Gaussian mean problem

1) 1960’s and beyond:

=@ UL=max(x,0)+1.64c

| 42) 1979“PDG" (real 1986 PDG) and beyond:
i Bayesian with uniform prior

_43) 1997: Alex Read et al. (LEP)

" _<4) 1997: Feldman and Cousins (NOMAD)
Unified Approach

5) 2010: Power Constrained Limits;
Cowan, Cranmer, Gross, Vitells (ATLAS):
UL = max(0, max(x, Xp¢ ) + 1.640)

zzzzzzzzzzzz
Mossured Wasn 3

Bob Cousins. Bayes...and the LHC, 12 Sep 2011 40



Bayesian with Uniform Prior

Tradition in HEP Is to use uniform  z" ¢ T T T T T T TS
prior for both Gaussian mean and
Poisson mean. Leads to over-
coverage in Poisson with bkgnd.

Mean

© A N W B 1O N O ©
[
N

Modern “objective” Bayesians
use uniform prior for Gaussian
mean but Jeffreys prior 1/Nufor
Poisson mean. This leads to
undercoverage for some u.

z

-

<3 2 1 0 1 2 3 4 5 IBHHT
Measured Mean x

Bayesian derivation replaces Recent (2010) work on
sensitivity to irrelevant data with ~ “reference priors”
sensitivity to prior. (Demortier, Jain,

In HEP, there is good experience ' 0SPer) may lead to

with priors in low dimensions, SHrII:_'Lt In priors used In
some naiveteé in high D. '
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Clg

-
(=

In 1988, for Poisson-with-
background problem, Gunter
Zech performed a frequentist
construction of upper limits using
non-standard conditional
probabilities. It gave the same
numerical results as O. Helene’s
Bayesian calculation (P(u) flat).

Mean
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N

z
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3 2 414 0 1 2 3 4 5 6 7

In 1997, Alex Read et al Vieasured Mean
Interpreted Zech’s formula as

ratio of two tail probabilities and

applied it more generally: CLs.

For the current problem, it again
gives same result as Bayesian
with P(u) flat (1).

Bob Cousins. Bayes...and the LHC, 12 Sep 2011



Foundations (?) of CLg

As an intuitive development in HEP, it appears
that a firm foundation for CLg Is lacking.

From Alex Read in 2000 CLW Yellow Report: =

B2 4 0 1 2 3 4 5 & 7
Measured Mean x

a
o L] -~ oo w (=3
T T

L (2] [
TTTTT

A confidence limit is an upper limit if the
exclusion confidence is less than the specified
confidence level for all values of the population
parameter above the confidence limit.

“Note that confidence intervals obtained in this
manner do not have the same interpretation as
traditional frequentist confidence intervals nor as
Bayesian credible intervals.” (italics in original)

BC: both CL¢'s “reasonable” performance and its

over-coverage are probably related to its roots in

Bayesian answers for simple problems, with flat
rior in Poisson mean avoiding problems for UL.
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Unified Approach of Feldman and Cousins

h
=)

(=N ) w & o [=2) ~ [=2] 1]
Fprrrryrrrrprrrrfrereprrrrpri e irrrprr i rrri]

Starting points:
1) Remove null intervals
2) 95% coverage for all .

Mean
S :
N ]
I .
h}\ 111 I:

Immediately: 95% acceptance
interval for u=0Is [— oo, 1.64].

Leads to Unified Approach: [uy, 1]
1) For low and negative x, x4=0. ! = _
2) n=0 excluded when rejected N e = P U TP VW |
by one-tailed test at 1-C.L. (!) vicasured Hean
3) Atlarge X, [u,14,] cOnverges to
central interval.
[Above seen by S. Ciampolillo,
who also moved x<0 to 0.] F-C:
4) Interval based on Ay? (L.R.)
5) Cures “flip-flop” problem. Phys Rev D57 3873 (1998)

i 7
pd 7
4

5
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Unified Approach of Feldman and Cousins (cont.)

With diagonal line, interval uses y?

—
o
TT]

Mean u

instead of Ay?. Recall above:
“*How to make correspondence
between Ay? and C.L.?”

F-C: associate a value of Ay? =

v2(1) — %°(Uy,es) With each true
value 4. The endpoints of its

4
7

acceptance interval have that Ay>?.

o - N w L (51 [=2] ~ -] {1+
BEEEREEEEENEEEESEEEEEEERERREEERAREN RS BR

P
pd 7
i 4
5 rd

f
-~ 7~
[ 7
— r

Acceptance interval has those

values of x ranked in 95% by Ay?.
Given X,, confidence interval
contains those values of ufor
which X, is in top 95% rank by Ay?.
Automatically includes or
excludes u=0 based on Ay>?.
Works for 3o, 5oas one wishes.
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Phys. Rev. D57 3873 (1998)

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman'
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

“Test for 0=0," &
“Is B, in confidence interval for 0”

Using the Likelihood Ratio Test, this
correspondence is the basis of the
“Unified Approach”
Intervals/regions of F-C.

In Gaussian problem, =2In(LR) = Ay>.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

Kendall and Stuart

CHAPTER 22
LIKELTHOOD RATIO TESTS AND TEST EFFICIENCY

The LR statistic
221  The ML method discussed in Chapter |8 is aconstructive method of obtaining estimators
which, under certain conditions, have desirable properties. A method of test construction closely
allied to it is the likelihood ratio (LR) method, proposed by Neyman and Pearson (1928). It has
played a role in the theory of tests analogous to that of the ML method in the theory of estimation.
As before, we have the LF
n
Lexi8) = [ o),
i=1
where 8 = (8., 8,) is a vector of ¥ + 5 = k parameters (¢ = |, 5 > 0) and x may also be a vector.
We wish to test the hypothesis
Ho: 8, =8, (22.1)

which is composite unless s = 0, against
Hy o8, # 6.

We know that there is generally no UMP test in this situation, but that there may be a UMPU test
—-«¢f. 21.31.
The LR methad first requires us to find the ML estimators of (8., #,), giving the unconditional

maximum of the LF

Lix|yy. 8,). (222
and also 1o find the ML estimators of 8, when Hp holds,' giving the conditional maximum of
the LF .

Lix|@., 0, 22.3)

b, in (22.3) has been given a double circunflex to emphasize that it does not in general coincide
with @, in (22.2). Now consider the likelihood ratio?

Lixi8,0, 0,
§ = Lxifro.9,) (22.4)
L(x|8,.0,)

Since (22.4) 1s the ratio of a conditional maximum of the LF to its unconditional maximum, we
clearly have

O=l=1L (22.5)

Intuitively, I is a reasonable test statistic for Hy: it is the maximum likelihood under Hy as a
fraction of its largest possible value, and large values of { signify that Hy is reasonably acceptable.
The critical region for the test statistic is therefore

I 2 ¢, (22.6)

where ¢ is determined lrom the distribumtion g{/) of ! 1o give a size-c (est, that is,

f Telhdl = e (22.7)
[}

Nerther maximum value of the LF is affected by a change of parameter from @ o 7(#), the ML
estimator of T(#) heing () — cf. 18.3. Thus the LR statistic is invariant under reparametrization.
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Limits of Cowan, Cranmer, Gross, and Vitel

Before Power Constraint: uses Ay?
but forces acceptance interval to
be one-sided, even on boundary.

Result: same old diagonal line as
with absolute y?, except with null
Intervals replaced by

UL=0 for x <-1.64.

Coverage of 4=01s 100% (!)

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

Mean

10 - N w L a [e2] ~ =] ©w
[TTT T[T T T T [T T T T[T I T I T T T[T T T T T TTT]T
N

1

s (CCGV)

O TTTETrTTTrTT T TTTTPTTTT

CCGV one-sided Ay?

i
2z
Z
.

£z

A
Z

3 2 1 0 1 2 3 4 5 6 7
Measured Mean x

http://arxiv.org/abs/1105.3166
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CCGV and the Betting Game

Recall: With original diagonal line,
Paula can guarantee that odds in
Peter’s favor are no better than e.qg.,
14:1 odds by betting when x<0.7.

In whole “relevant subset”
literature, acceptance regions have

p(x € [xy.x;] | ) =C.L.

But CCGV acceptance region for Measured Mean x
=0 has p=100%, not 95% !

-
(=]

(=] - N w L (5, N ~l =) w0
TTT T T T T T T T T [T I T I T T T[T T T T[T TTT]TTT 1] TTTT1]

Mean

| CCGV one-sided Ay2 | 2

Z
pd

With 100% unconditional coverage for a single value of 4,
all the math based on “suprema” of conditional coverage of
course breaks down. How (or whether) to adapt whole
literature is not agreed on. | think it is hard to claim that the
problem simply disappeared. N.B. Paula wins if x4 has
acceptance region p(X € [X;,X,] | &) = C.L. (1)
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Power Constrained Limits of CCGV

Power Cons_tralnt (PC_Z) added by CCGY with 16% PG
hand to avoid excluding values of u ATLAS publications |
for which N-P power below cutoff.

ATLAS PCL at first used PC=16%, I.e.,
UL = 0.64 for X € [- o, =1] (shown)

Compare with 1960s original DHL,
UL = 1.64 for X € [— o, O].

L
o

Mean

o =Y N w h L)) » ~ =] [{e)
TITTT T T T T T[T T T[T I TT [ TT T T[T TTT]IT

T[T 1T

i
Z

i
Z
P4

3 2 1 0 1 2 3 4 5 6 7
Measured Mean x

ATLAS revisited the value of PC, L AQrrrr T
more recently used 50% PC: £ °1 Original 1960s DHL
corresponds to original DHL (). i ,
DHL is what set everyone looking i

for better alternatives in 1970’s, J: /

1980’s, and 1990s (!) o £

http://arxiv.org/abs/1105.3166 % 2 1 0 1 2 3 4 5 6 7 40
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Discussion

From three rather different perspectives, authors of
Bayesian, CLg, and F-C rejected original diagonal
line. Recent insight into conditional coverage
supports this conclusion.

Adding u values with 100% coverage muddies
situation, but | see no advantage to returning to
Diagonal plus Horizontal Line methods.

DHL with 16% power constraint was a material
change in HEP traditions.

Of all above methods, only F-C Unified Approach has
coverage = C.L. for all i; generalizes well; and
ameliorates several issues.
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“But Bob, | insist on an upper limit!”

“Do | need to define upper for you?” *

Bob: Let’'s consider two deep points. a 55555555

uuuuuuuuuuu

1) Insisting on a CCGV upper limit means insisting
on not rejecting =0 at 95% while simultaneously
rejecting g which has a better Ay?than =0 (say
when x =2). This is related to the “extra” power of
CCGV upper limit when it rejects u=1when x =-1.

2) Insisting on an upper limit means insisting on
over-coverage (unless null intervals are brought
back). Intervals with correct coverage, based on Ay?,
allow for more relevant and interpretable post-data
Inference.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011
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“But Bob, CCGV intervals have more power?!’

Bob:

:::::::::::

uuuuuuuuuuu

diagonal line with null intervals. It also has perfect
coverage.

Yet it bothers most of us. Power Is a pre-data
concept which must be supplemented by post-data
considerations.
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“But Bob, | don’t want to exclude =0 unless | have 5c! ”

Bob: Let’s consider two more points. 5

1) Reporting a 95% interval which does not includ

=0 1s not declaring discovery (or evidence, or
Indication, or...).

The F-C interval is reporting those values of gwhich

have the best Ax?(1) = x?(1) — x*(1,0<) given the
observed x. That would seem to be very useful!
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“But Bob, | don’t want to exclude =0 unless | have 5c! ”

o

uuuuuuuuuu

for which 4=0 is just included in the F-C interval.

E.g., for x=2, 4=0is in the 97.72% C.L. F-C interval.
(1- C.L..c IS Just the one-sided p-value for 2c.)

Or one can quote the number of sigma.
This is in fact what we are used to doing!
It all falls out naturally from the “Unified” Approach.
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“But Bob, isn’t gtoo tightly constrained when x<<0?”

Bob: Gleser (above) points out this behavior §
IS consistent with the likelihood principle.

It does however call into question the model; = ==
the assumption of Gaussian shape and value of o.

NN

Statistician Woodroofe commenting on Mandelkern:
“The unified method...clearly provides an
Improvement over the Neyman intervals...however,
...It can produce unbelievably short intervals."

Woodroofe & Sen (2009): add uncertainty to o, leads
to looser constraint for x<<0. This could be more
fruitful approach than power constraint.

| think it’s a better fit to physicist’s thinking (and was
In fact the answer for electron neutrino mass!)
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Poisson with Background Problem

Not all difficulties are exposed with the Gaussian
problem, and the best-founded objection to F-Cis Iin
the Poisson problem with zero events observed.

That’s another talk! | just note that the PCL version
of the battle-ground plot has not been publicized by

PCL advocates, as far as | know.

1996 PDG RPP, a la Helene or Zech

15 —

20

() events observed

0 5 10 15 20
Expected background (events)

o

90% confidence coefficient
upper limit on signal

upper end of confidence interval for g

Mg =

Figure 28.8:  00% co
events as o function of t

1.0
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15 [

10 [

0 5 10 15

1998 PDG RPP, a la Feldman & Cousins

nd

=

—
Mean b N

Mean expected background b

56



Conclusion

Since 2002, the PDG RPP has had a menu of choices
that is quite sufficient from my point of view.

= =

Bob Cousins. Bayes...and the LHC, 12 Sep 2011



Acknowledgments

For over 25 years, | have discussed these issues
with too many people to recall. Among those
helping me to understand these issues some years
ago were Gary Feldman, Don Groom, Virgil Highland,
Fred James, and Louis Lyons. More recently,
discussions with CMS and ATLAS colleagues have
shed more light on the issues and stimulated this
review.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

58



References

A starting point in the literature is in the works cited
by my recent arxiv post,
http://arxiv.org/abs/1109.2023.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

59



Bob Cousins. Bayes...and the LHC, 12 Sep 2011

Backup

60



Unified and Un-Unified Intervals
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N
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Feldman-Cousins for Two-sided Bound -1 < <1, o=1
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Comparison of ATLAS 16% PCL with the 3 methods in PDG

L B B L L L L L BN
[ —— Power—Constrained Upper Limits (ATLAS Method) -~ ]
35 e Unconstrained Upper Limits
I CLs Upper Limits (or Bayes with flat prior) -
] p— Feldman—Cousins Intervals
25 Nominal Confidence Level = 957%

True Mean u
8]

1.6

LI | TJT T T ||_I LI | T T T T |I LI | L | T

1
L. Demortier
0.5
D 1 1 1 q"'l 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 -|| 1
2 15 -1 —05 0 0.5 1 1.5 2
< 16% prob. if u=0 —> Measured Mean X

(Atlas unconstrained U.L. is zero, not null, for x < -1.64)
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Estimation of Upper Limits from Experimental Data Report C00-3539-38
Virgil L. Highland

July 1986, Revised February 1987

Temple University

Philadelphia, PA 19122

Upper Limit

Upper limit on mean of
Gaussian based on one
sample, x.

Physical values of 2
mean are non-negative.

Numbers are in units of )
sigma (Gaussian rms). .+~ 1=pure classical
2=truncated classical
. 3=shifted classical
-2 = L 4=Bayesian =
’ 5=Shifted bayesian,
6=McFarlane loss of confidence

1 1 1 | 1
“+ —a —= o) 2 4

Measured X

FIGURE 1
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Efron Comparison of F-C and Bayesian Model Selection

6

5]
-— /’;
£ 4
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ModSelect: U(0,Inf) & x0=0.50 N
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Figure 4: Moving the break-even point xg, (17), closer to zero makes the Model Selection upper 95% point nearly

match the Feldman-Cousins bound.
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Features of 95% C.L. F-C intervals:

=0 1s lower endpoint of interval until x Is so large
that one-tailed test excludes 4=0 at 95% (x > 1.64)

At x=0, interval is [0,1.96] (in contrast to u < 1.64).

For x<0, interval becomes more restrictive as x
pecomes more negative.

central interval, x #£1.96.
Coverage is exactly 95% for all values of u.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

~or x >>1, the F-C interval converges to the 95% C.L.
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Comparison of limit/interval for x = —1.

1)
2)
3)
4)

S)

Bob Cousins

UL = max(x,0)+1.64 =0+ 1.64 =1.64

Bayesian with flat prior: UL=1.41

CLs UL=1.41

Unified Approach interval a la F-C: [0, 1.10].
Uoest = 0; x%(tyesr) = 1. Interval includes g for
which Ay? < critical Ay? for that g, .

16% PCL with Xp- = —1: UL = max(0, max(x, -1) +
1.64) = max(0, -1 +1.64) = 0.64.

Note that y%(x#=0.64) = (- 1 — 0.64)> = 2.70. Interval
includes g for which ¢2 (not Ax?!) is less than the
“book value” Ay? = 2.70 for one-sided limit! In
effect, this brings in goodness-of-fit to the model.
(Sec. 4C of F-C paper).
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