Search for local parity violation with 39 GeV data

Gang Wang (UCLA)

Dataset and cuts

$$\left\langle \cos(\varphi_1 + \varphi_2 - 2\psi_{RP}) \right\rangle = \frac{\left\langle \cos(\varphi_1 + \varphi_2 - 2\psi_{EP}) \right\rangle}{EP \text{ resolution}}$$

The efficiency of ZDC-SMD is low at 39 GeV collisions, so we use the EP from TPC.

39 GeV 8M events after cuts

```
sqrt(Vx*Vx+Vy*Vy) < 2 cm
|vertexZ| < 40 cm
```

Track cuts: daughter nhitfits ≥ 15 , nhitfits/nmax ≥ 0.52 DCA ≤ 2 cm $|eta| \leq 1$ $0.15 \leq pT \leq 2 \text{ GeV/c}$

Centrality definition

function for peripheral events: $f(x) = 1 - exp(-p_0^* x^{p_1})$ centrality Refmult p₀=0.92±0.03, p₁=0.43±0.01 0-5 >316 10⁶ 5-10 >265 **10**⁵ 10-20 >185 **10**⁴ 20-30 >125 10³ 30-40 >81 10² 40-50 >50 10 50-60 >28 400 >15 100 200 300 500 60-70 0 Refmult (MC) 70-80 >7

I use the centrality definition from Hiroshi M., and also his weight

4

TPC phi angle

The EP from TPC is pretty flat, after applying the phi weight.

To flatten the distribution, see "E877 Collaboration, Phys. Rev. C 56, 3254 (1997)" for details.

I applied the shifting method to force the EP from TPC to be even more flat.

TPC event plane at 39 GeV

The 1st and 2nd particles removed from the event plane reconstruction to remove the auto-correlation.

I also applied the shifting method to force the phi distributions of the first two particles to be flat, to reduce detector effects.

Results with different beam energies

The correlator for 39 GeV AuAu is similar to those for 200 GeV and 62.4 Gev.

Results with different combinations

The correlators for ++ and -- are consistent with each other.